-
Notifications
You must be signed in to change notification settings - Fork 1
/
model.py
270 lines (266 loc) · 9.93 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import time
import math
import numpy as np
import mindspore as ms
import mindspore.nn as nn
import mindspore.ops as ops
import mindspore.numpy as ms_np
import mindspore.ops.operations as P
from attention import AttentionLayer
from retention import *
from loss_function import *
from mindspore.dataset.transforms import PadEnd
from mindspore.common.initializer import initializer, XavierNormal
class CellFM(nn.Cell):
def __init__(self,n_genes,cfg,**kwargs):
super().__init__()
# const
self.depth=cfg.enc_nlayers
self.if_cls=cfg.label
self.n_genes=n_genes
self.add_zero=cfg.add_zero and not cfg.pad_zero
self.pad_zero=cfg.pad_zero
# tensor
self.gene_emb=ms.Parameter(
initializer(XavierNormal(0.5),[n_genes+1+(-n_genes-1)%8,cfg.enc_dims])
)
self.cls_token=ms.Parameter(initializer(XavierNormal(0.5),[1,1,cfg.enc_dims]))
self.zero_emb=ms.Parameter(initializer('zeros',[1,1,cfg.enc_dims]))
self.gene_emb[0,:]=0
# layer
self.value_enc=ValueEncoder(cfg.enc_dims)
self.encoder=nn.CellList([
RetentionLayer(
cfg.enc_dims,cfg.enc_num_heads,cfg.enc_nlayers,
cfg.enc_dropout*i/cfg.enc_nlayers, cfg.lora,cfg.recompute
)
for i in range(cfg.enc_nlayers)
])
self.value_dec=ValueDecoder(cfg.enc_dims,cfg.dropout,zero=self.add_zero)
self.cellwise_dec=CellwiseDecoder(cfg.enc_dims,cfg.enc_dims,zero=self.add_zero)
if cfg.label:
cls_weight=kwargs.get('cls_weight',np.ones(cfg.num_cls))
self.weight=ms.Tensor(cls_weight,ms.float32)
self.cluster_emb=ms.Parameter(
initializer(XavierNormal(0.5),[cfg.num_cls,cfg.enc_dims])
)
self.query=RetentionLayer(
cfg.enc_dims,cfg.enc_num_heads,0.5,
0,0,False
)
self.classifier=nn.Dense(cfg.enc_dims,1,has_bias=False)
self.proj=nn.SequentialCell(
nn.Dense(cfg.enc_dims,cfg.enc_dims),
nn.LeakyReLU(),
nn.Dense(cfg.enc_dims,cfg.enc_dims),
nn.LeakyReLU(),
nn.Dense(cfg.enc_dims,cfg.enc_dims),
)
# operator
self.mm=P.MatMul(transpose_b=True)
self.norm=SRMSNorm(cfg.enc_dims)
self.one=P.Ones()
self.zero=P.Zeros()
self.tile=P.Tile()
self.gather=P.Gather()
self.gather2=P.Gather()
self.maskmul=P.Mul()
self.mul=P.Mul()
self.add=P.Add()
self.mean=P.ReduceMean()
self.posa=P.Add()
self.rsqrt=P.Rsqrt()
self.cat1=P.Concat(1)
self.cat2=P.Concat(1)
self.slice=P.Slice()
self.slc=P.Slice()
self.sum=P.ReduceSum(True)
self.detach=P.StopGradient()
self.logsoftmax=P.LogSoftmax(-1)
# loss
self.reconstruct1=MaskedMSE(tag='_ge')
self.reconstruct2=MaskedMSE(tag='_ce')
self.bce_loss1 = BCE(tag='_ge')
self.bce_loss2 = BCE(tag='_ce')
self.nll_loss=ops.NLLLoss()
self.logger=ops.ScalarSummary()
def encode(self,expr,gene,zero_idx):
b,l=gene.shape
gene_emb=self.gather(self.gene_emb,gene,0)
expr_emb,unmask=self.value_enc(expr)
len_scale=self.detach(self.rsqrt(self.sum(zero_idx,-1)-1).reshape(b,1,1,1))
if not self.pad_zero:
zero_unmask=(1-zero_idx).reshape(b,-1,1)*unmask
expr_emb=zero_unmask*self.zero_emb+(1-zero_unmask)*expr_emb
expr_emb=self.posa(gene_emb,expr_emb)
cls_token=self.tile(self.cls_token,(b,1,1))
expr_emb=self.cat1((cls_token,expr_emb))
if self.pad_zero:
expr_emb=self.maskmul(expr_emb,zero_idx.reshape(b,-1,1))
mask_pos=self.cat2((self.one((b,1,1),unmask.dtype),unmask)).reshape(b,1,-1,1)
for i in range(self.depth//2):
expr_emb=self.encoder[i](
expr_emb,
v_pos=len_scale,
attn_mask=mask_pos
)
if self.pad_zero:
mask_pos=zero_idx.reshape(b,1,-1,1)
else:
mask_pos=None
for i in range(self.depth//2,self.depth):
expr_emb=self.encoder[i](
expr_emb,
v_pos=len_scale,
attn_mask=mask_pos
)
return expr_emb,gene_emb
def forward(self,expr,gene,zero_idx):
b,l=gene.shape
emb,gene_emb=self.encode(expr,gene,zero_idx)
cls_token,expr_emb=emb[:,0],emb[:,1:]
cls_token=cls_token.reshape(b,-1)
return expr_emb,gene_emb,cls_token
def construct(
self,raw_nzdata,masked_nzdata,nonz_gene,mask_gene,zero_idx,*args
):
expr_emb,gene_emb,cls_token=self.forward(
masked_nzdata,nonz_gene,zero_idx
)
b,l,d=expr_emb.shape
if self.if_cls:
attn_mask=self.slice(zero_idx,(0,1),(-1,-1))
clst_emb=self.cluster_emb.reshape(1,-1,d)
cluster=self.query(clst_emb,y=expr_emb,attn_mask=attn_mask.reshape(b,1,-1,1))
labelpred1=self.classifier(cluster).reshape(b,-1)
labelpred2=self.mm(
self.proj(cls_token),
self.cluster_emb.astype(cls_token.dtype)
)
if self.add_zero:
gw_pred,z_prob1=self.value_dec(expr_emb)
cw_pred,z_prob2=self.cellwise_dec(cls_token,gene_emb)
else:
gw_pred=self.value_dec(expr_emb)
cw_pred=self.cellwise_dec(cls_token,gene_emb)
if self.training:
mask=mask_gene
loss=0
loss1=self.reconstruct1(gw_pred,raw_nzdata,mask)
loss2=self.reconstruct2(cw_pred,raw_nzdata,mask)
loss=loss+loss1+loss2
if self.add_zero:
nonz_pos=zero_idx
loss3=self.bce_loss1(z_prob1,nonz_pos,mask_gene)
loss4=self.bce_loss2(z_prob2,nonz_pos,mask_gene)
loss=loss+loss3+loss4
if self.if_cls:
label=args[-1]
logits1=self.logsoftmax(labelpred1.astype(ms.float32))
logits2=self.logsoftmax(labelpred2.astype(ms.float32))
loss5=self.nll_loss(logits1,label,self.weight.astype(ms.float32))[0]
loss6=self.nll_loss(logits2,label,self.weight.astype(ms.float32))[0]
self.logger('gw_celoss',loss5)
self.logger('cw_celoss',loss6)
loss=loss+loss5+loss6
return loss
else:
return gw_pred,cw_pred
class ValueEncoder(nn.Cell):
def __init__(self,emb_dims):
super().__init__()
self.value_enc=FFN(1,emb_dims)
self.gather=P.Gather()
self.one=P.Ones()
self.add=P.Add()
self.mul1=P.Mul()
self.mul2=P.Mul()
self.mask_emb=ms.Parameter(initializer('zeros',[1,1,emb_dims]))
self.split=P.Split(-1,2)
def construct(self,x):
b,l=x.shape[:2]
if len(x.shape)==3:
unmask,expr=self.split(x)
unmasked=self.mul1(self.value_enc(expr),unmask)
masked=self.mul2(self.mask_emb,(1-unmask))
expr_emb=self.add(masked,unmasked)
else:
expr=x.reshape(b,l,1)
unmask=self.one(expr.shape,expr.dtype)
expr_emb=self.value_enc(expr)
return expr_emb,unmask
class FFN(nn.Cell):
def __init__(self,in_dims,emb_dims,b=256):
super().__init__()
self.w1=nn.Dense(in_dims,b,has_bias=False)
self.act1=nn.LeakyReLU()
self.w3=nn.Dense(b,b,has_bias=False)
self.softmax=P.Softmax(-1)
self.table=nn.Dense(b,emb_dims,has_bias=False)
self.dim=emb_dims
self.add=P.Add()
self.mul=P.Mul()
self.a=ms.Parameter(initializer('zeros',[1,1]))
def construct(self,x):
b,l,d=x.shape
v=P.Reshape()(x,(-1,d))
v=self.act1(self.w1(v))
v=self.add(self.w3(v),self.mul(v,self.a))
v=self.softmax(v)
v=self.table(v)
v=P.Reshape()(v,(b,l,-1))
return v
class ValueDecoder(nn.Cell):
def __init__(self,emb_dims,dropout,zero=False):
super().__init__()
self.zero=zero
self.sigmoid=P.Sigmoid()
self.w1=nn.Dense(emb_dims,emb_dims,has_bias=False)
self.act=nn.LeakyReLU()
self.w2=nn.Dense(emb_dims,1,has_bias=False)
self.relu=P.ReLU()
if self.zero:
self.zero_logit = nn.SequentialCell(
nn.Dense(emb_dims, emb_dims),
nn.LeakyReLU(),
nn.Dense(emb_dims, emb_dims),
nn.LeakyReLU(),
nn.Dense(emb_dims, 1),
nn.Sigmoid(),
)
def construct(self,expr_emb):
b,l,d=expr_emb.shape
x=self.w2(self.act(self.w1(expr_emb)))
pred=P.Reshape()(x,(b,l))
if not self.zero:
return pred
else:
zero_prob=self.zero_logit(expr_emb).reshape(b,-1)
return pred,zero_prob
class CellwiseDecoder(nn.Cell):
def __init__(self,in_dims,emb_dims=None,dropout=0.,zero=False):
super().__init__()
emb_dims=emb_dims or in_dims
self.act=P.Sigmoid()
self.sigmoid=P.Sigmoid()
self.add=P.Add()
self.tile=P.Tile()
self.cat=P.Concat(-1)
self.map=nn.Dense(in_dims, emb_dims,has_bias=False)
self.bmm=P.BatchMatMul(transpose_b=False)
self.mm=P.MatMul(transpose_b=True)
self.relu=P.ReLU()
self.zero=zero
if zero:
self.zero_logit = nn.Dense(emb_dims, emb_dims)
def construct(self,cell_emb,gene_emb):
b=cell_emb.shape[0]
query=self.act(self.map(gene_emb))
key=cell_emb.reshape(b,-1,1)
pred=self.bmm(query,key).reshape(b,-1)
if not self.zero:
return pred
else:
zero_query=self.zero_logit(gene_emb)
zero_prob=self.sigmoid(self.bmm(zero_query,key)).reshape(b,-1)
return pred,zero_prob