forked from EugenHotaj/pytorch-generative
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
76 lines (65 loc) · 2.18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"""Main training script for models."""
import argparse
import os
import torch
import pytorch_generative as pg
MODEL_DICT = {
"beta_vae": pg.models.vae.beta_vae,
"fvbn": pg.models.autoregressive.fvbn,
"gated_pixel_cnn": pg.models.autoregressive.gated_pixel_cnn,
"image_gpt": pg.models.autoregressive.image_gpt,
"made": pg.models.autoregressive.made,
"nade": pg.models.autoregressive.nade,
"nice": pg.models.flow.nice,
"pixel_cnn": pg.models.autoregressive.pixel_cnn,
"pixel_snail": pg.models.autoregressive.pixel_snail,
"vae": pg.models.vae.vae,
"vd_vae": pg.models.vae.vd_vae,
"vq_vae": pg.models.vae.vq_vae,
"vq_vae_2": pg.models.vae.vq_vae_2,
}
def _worker(local_rank, *args):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12345"
os.environ["CUDA_VISIBLE_DEVICES"] = str(local_rank)
torch.distributed.init_process_group(
backend="nccl",
world_size=args[-1],
rank=local_rank,
)
model, model_args = args[0], args[1:]
MODEL_DICT[model].reproduce(*args, device_id=local_rank)
def main(args):
if args.gpus > 1:
worker_args = args.model, args.epochs, args.batch_size, args.logdir, args.gpus
torch.multiprocessing.spawn(_worker, worker_args, nprocs=args.gpus)
MODEL_DICT[args.model].reproduce(args.epochs, args.batch_size, args.logdir)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
type=str,
help="the available models to train",
default="nade",
choices=list(MODEL_DICT.keys()),
)
parser.add_argument(
"--epochs", type=int, help="number of training epochs", default=1
)
parser.add_argument(
"--batch-size",
type=int,
help="the training and evaluation batch_size",
default=128,
)
parser.add_argument(
"--logdir",
type=str,
help="the directory where to log model parameters and TensorBoard metrics",
default="/tmp/run",
)
parser.add_argument(
"--gpus", type=int, help="number of GPUs to run the model on", default=0
)
args = parser.parse_args()
main(args)