-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathdeepgoplus.py
executable file
·304 lines (262 loc) · 10.9 KB
/
deepgoplus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#!/usr/bin/env python
import click as ck
import numpy as np
import pandas as pd
import tensorflow as tf
import logging
import math
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.layers import (
Input, Dense, Embedding, Conv1D, Flatten, Concatenate,
MaxPooling1D, Dropout, RepeatVector, Layer
)
from tensorflow.keras.utils import Sequence
from tensorflow.keras import backend as K
from tensorflow.keras.optimizers import Adam, RMSprop
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, CSVLogger
from sklearn.metrics import roc_curve, auc, matthews_corrcoef
from utils import Ontology, FUNC_DICT
from aminoacids import to_ngrams, to_onehot, MAXLEN
logging.basicConfig(level=logging.INFO)
# config = tf.ConfigProto(allow_soft_placement=True) not required if
tf.config.set_soft_device_placement(True)
# config.gpu_options.allow_growth = True
# session = tf.Session(config=config)
# K.set_session(session)
@ck.command()
@ck.option(
'--go-file', '-gf', default='data/go.obo',
help='Gene Ontology file in OBO Format')
@ck.option(
'--train-data-file', '-trdf', default='data/train_data.pkl',
help='Data file with sequences and complete set of annotations')
@ck.option(
'--test-data-file', '-tsdf', default='data/test_data.pkl',
help='Data file with sequences and complete set of annotations')
@ck.option(
'--terms-file', '-tf', default='data/terms.pkl',
help='Data file with sequences and complete set of annotations')
@ck.option(
'--model-file', '-mf', default='data/model.h5',
help='DeepGOPlus model')
@ck.option(
'--out-file', '-o', default='data/predictions.pkl',
help='Result file with predictions for test set')
@ck.option(
'--split', '-s', default=0.9,
help='train/valid split')
@ck.option(
'--batch-size', '-bs', default=32,
help='Batch size')
@ck.option(
'--epochs', '-e', default=12,
help='Training epochs')
@ck.option(
'--load', '-ld', is_flag=True, help='Load Model?')
@ck.option(
'--logger-file', '-lf', default='data/training.csv',
help='Batch size')
@ck.option(
'--threshold', '-th', default=0.5,
help='Prediction threshold')
@ck.option(
'--device', '-d', default='gpu:0',
help='Prediction threshold')
@ck.option(
'--params-index', '-pi', default=-1,
help='Definition mapping file')
def main(go_file, train_data_file, test_data_file, terms_file, model_file,
out_file, split, batch_size, epochs, load, logger_file, threshold,
device, params_index):
params = {
'max_kernel': 129,
'initializer': 'glorot_normal',
'dense_depth': 0,
'nb_filters': 512,
'optimizer': Adam(lr=3e-4),
'loss': 'binary_crossentropy'
}
# SLURM JOB ARRAY INDEX
pi = params_index
if params_index != -1:
kernels = [33, 65, 129, 257, 513]
dense_depths = [0, 1, 2]
nb_filters = [32, 64, 128, 256, 512]
params['max_kernel'] = kernels[pi % 5]
pi //= 5
params['dense_depth'] = dense_depths[pi % 3]
pi //= 3
params['nb_filters'] = nb_filters[pi % 5]
pi //= 5
out_file = f'data/predictions_{params_index}.pkl'
logger_file = f'data/training_{params_index}.csv'
model_file = f'data/model_{params_index}.h5'
print('Params:', params)
go = Ontology(go_file, with_rels=True)
terms_df = pd.read_pickle(terms_file)
terms = terms_df['terms'].values.flatten()
train_df, valid_df = load_data(train_data_file, terms, split)
test_df = pd.read_pickle(test_data_file)
terms_dict = {v: i for i, v in enumerate(terms)}
nb_classes = len(terms)
with tf.device('/' + device):
test_steps = int(math.ceil(len(test_df) / batch_size))
test_generator = DFGenerator(test_df, terms_dict,
nb_classes, batch_size)
if load:
logging.info('Loading pretrained model')
model = load_model(model_file)
else:
logging.info('Creating a new model')
model = create_model(nb_classes, params)
logging.info("Training data size: %d" % len(train_df))
logging.info("Validation data size: %d" % len(valid_df))
checkpointer = ModelCheckpoint(
filepath=model_file,
verbose=1, save_best_only=True)
earlystopper = EarlyStopping(monitor='val_loss', patience=6, verbose=1)
logger = CSVLogger(logger_file)
logging.info('Starting training the model')
valid_steps = int(math.ceil(len(valid_df) / batch_size))
train_steps = int(math.ceil(len(train_df) / batch_size))
train_generator = DFGenerator(train_df, terms_dict,
nb_classes, batch_size)
valid_generator = DFGenerator(valid_df, terms_dict,
nb_classes, batch_size)
model.summary()
model.fit(
train_generator,
steps_per_epoch=train_steps,
epochs=epochs,
validation_data=valid_generator,
validation_steps=valid_steps,
max_queue_size=batch_size,
workers=12,
callbacks=[logger, checkpointer, earlystopper])
logging.info('Loading best model')
model = load_model(model_file)
logging.info('Evaluating model')
loss = model.evaluate(test_generator, steps=test_steps)
logging.info('Test loss %f' % loss)
logging.info('Predicting')
test_generator.reset()
preds = model.predict(test_generator, steps=test_steps)
# valid_steps = int(math.ceil(len(valid_df) / batch_size))
# valid_generator = DFGenerator(valid_df, terms_dict,
# nb_classes, batch_size)
# logging.info('Predicting')
# valid_generator.reset()
# preds = model.predict_generator(valid_generator, steps=valid_steps)
# valid_df.reset_index()
# valid_df['preds'] = list(preds)
# train_df.to_pickle('data/train_data_train.pkl')
# valid_df.to_pickle('data/train_data_valid.pkl')
test_labels = np.zeros((len(test_df), nb_classes), dtype=np.int32)
for i, row in enumerate(test_df.itertuples()):
for go_id in row.prop_annotations:
if go_id in terms_dict:
test_labels[i, terms_dict[go_id]] = 1
logging.info('Computing performance:')
roc_auc = compute_roc(test_labels, preds)
logging.info('ROC AUC: %.2f' % (roc_auc,))
test_df['labels'] = list(test_labels)
test_df['preds'] = list(preds)
logging.info('Saving predictions')
test_df.to_pickle(out_file)
def compute_roc(labels, preds):
# Compute ROC curve and ROC area for each class
fpr, tpr, _ = roc_curve(labels.flatten(), preds.flatten())
roc_auc = auc(fpr, tpr)
return roc_auc
def create_model(nb_classes, params):
inp_hot = Input(shape=(MAXLEN, 21), dtype=np.float32)
kernels = range(8, params['max_kernel'], 8)
nets = []
for i in range(len(kernels)):
conv = Conv1D(
filters=params['nb_filters'],
kernel_size=kernels[i],
padding='valid',
name='conv_' + str(i),
kernel_initializer=params['initializer'])(inp_hot)
print(conv.get_shape())
pool = MaxPooling1D(
pool_size=MAXLEN - kernels[i] + 1, name='pool_' + str(i))(conv)
flat = Flatten(name='flat_' + str(i))(pool)
nets.append(flat)
net = Concatenate(axis=1)(nets)
for i in range(params['dense_depth']):
net = Dense(nb_classes, activation='relu', name='dense_' + str(i))(net)
net = Dense(nb_classes, activation='sigmoid', name='dense_out')(net)
model = Model(inputs=inp_hot, outputs=net)
model.summary()
model.compile(
optimizer=params['optimizer'],
loss=params['loss'])
logging.info('Compilation finished')
return model
def load_data(data_file, terms, split):
df = pd.read_pickle(data_file)
n = len(df)
# Split train/valid
n = len(df)
index = np.arange(n)
train_n = int(n * split)
np.random.seed(seed=0)
np.random.shuffle(index)
train_df = df.iloc[index[:train_n]]
valid_df = df.iloc[index[train_n:]]
return train_df, valid_df
class DFGenerator(Sequence):
def __init__(self, df, terms_dict, nb_classes, batch_size):
self.start = 0
self.size = len(df)
self.df = df
self.batch_size = batch_size
self.nb_classes = nb_classes
self.terms_dict = terms_dict
### copied from deepgopp
def __len__(self):
return np.ceil(len(self.df) / float(self.batch_size)).astype(np.int32)
def __getitem__(self, idx):
batch_index = np.arange(
idx * self.batch_size, min(self.size, (idx + 1) * self.batch_size))
df = self.df.iloc[batch_index]
data_onehot = np.zeros((len(df), MAXLEN, 21), dtype=np.float32)
labels = np.zeros((len(df), self.nb_classes), dtype=np.int32)
for i, row in enumerate(df.itertuples()):
seq = row.sequences
onehot = to_onehot(seq)
data_onehot[i, :, :] = onehot
for t_id in row.prop_annotations:
if t_id in self.terms_dict:
labels[i, self.terms_dict[t_id]] = 1
self.start += self.batch_size
print(data_onehot, labels)
return (data_onehot, labels)
###################
def __next__(self):
return self.next()
def reset(self):
self.start = 0
def next(self):
if self.start < self.size:
batch_index = np.arange(
self.start, min(self.size, self.start + self.batch_size))
df = self.df.iloc[batch_index]
data_onehot = np.zeros((len(df), MAXLEN, 21), dtype=np.int32)
labels = np.zeros((len(df), self.nb_classes), dtype=np.int32)
for i, row in enumerate(df.itertuples()):
seq = row.sequences
onehot = to_onehot(seq)
data_onehot[i, :, :] = onehot
for t_id in row.prop_annotations:
if t_id in self.terms_dict:
labels[i, self.terms_dict[t_id]] = 1
self.start += self.batch_size
return (data_onehot, labels)
else:
self.reset()
return self.next()
if __name__ == '__main__':
main()