-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
379 additions
and
379 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,85 +1,85 @@ | ||
import unittest | ||
|
||
import numpy as np | ||
|
||
from fslite.config.context import init_spark, stop_spark_session | ||
from fslite.fs.core import FSDataFrame | ||
from fslite.fs.utils import ( | ||
compute_missingness_rate, | ||
remove_features_by_missingness_rate, | ||
impute_missing, | ||
) | ||
from fslite.utils.datasets import get_tnbc_data_missing_values_path | ||
from fslite.utils.io import import_table_as_psdf | ||
|
||
|
||
class TestDataPreprocessing(unittest.TestCase): | ||
""" | ||
Define testing methods for data preprocessing (e.g, scaling, imputation, etc.) | ||
""" | ||
|
||
def setUp(self) -> None: | ||
init_spark( | ||
apply_pyarrow_settings=True, | ||
apply_extra_spark_settings=True, | ||
apply_pandas_settings=True, | ||
) | ||
|
||
def tearDown(self) -> None: | ||
stop_spark_session() | ||
|
||
@staticmethod | ||
def import_FSDataFrame() -> FSDataFrame: | ||
""" | ||
Import FSDataFrame object with missing values. | ||
Number of samples: 44 | ||
Number of features: 10 (5 with missing values) | ||
:return: | ||
""" | ||
df = import_table_as_psdf(get_tnbc_data_missing_values_path(), n_partitions=5) | ||
fsdf = FSDataFrame(df, sample_col="Sample", label_col="label") | ||
return fsdf | ||
|
||
def test_compute_missingness_rate(self): | ||
""" | ||
Test compute_missingness_rate method. | ||
:return: None | ||
""" | ||
|
||
fsdf = self.import_FSDataFrame() | ||
features_missing_rates = compute_missingness_rate(fsdf) | ||
self.assertEqual(features_missing_rates.get("tr|E9PBJ4"), 0.0) | ||
self.assertAlmostEqual(features_missing_rates.get("sp|P07437"), 0.295, places=2) | ||
|
||
def test_filter_by_missingness_rate(self): | ||
""" | ||
Test filter_missingness_rate method. | ||
:return: None | ||
""" | ||
|
||
fsdf = self.import_FSDataFrame() | ||
fsdf = remove_features_by_missingness_rate(fsdf, threshold=0.15) | ||
# print number of features | ||
print(f"Number of remaining features: {fsdf.count_features()}") | ||
|
||
self.assertEqual(fsdf.count_features(), 6) | ||
|
||
def test_impute_missing(self): | ||
""" | ||
Test impute_missing method. Impute missing values using the mean across columns. | ||
:return: None | ||
""" | ||
|
||
fsdf = self.import_FSDataFrame() | ||
fsdf = impute_missing(fsdf, strategy="mean") | ||
|
||
# Collect features as array | ||
array = fsdf._collect_features_as_array() | ||
|
||
# Check if there are no missing (NaNs) or null values | ||
self.assertFalse(np.isnan(array).any()) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() | ||
# import unittest | ||
# | ||
# import numpy as np | ||
# | ||
# from fslite.config.context import init_spark, stop_spark_session | ||
# from fslite.fs.core import FSDataFrame | ||
# from fslite.fs.utils import ( | ||
# compute_missingness_rate, | ||
# remove_features_by_missingness_rate, | ||
# impute_missing, | ||
# ) | ||
# from fslite.utils.datasets import get_tnbc_data_missing_values_path | ||
# from fslite.utils.io import import_table_as_psdf | ||
# | ||
# | ||
# class TestDataPreprocessing(unittest.TestCase): | ||
# """ | ||
# Define testing methods for data preprocessing (e.g, scaling, imputation, etc.) | ||
# | ||
# """ | ||
# | ||
# def setUp(self) -> None: | ||
# init_spark( | ||
# apply_pyarrow_settings=True, | ||
# apply_extra_spark_settings=True, | ||
# apply_pandas_settings=True, | ||
# ) | ||
# | ||
# def tearDown(self) -> None: | ||
# stop_spark_session() | ||
# | ||
# @staticmethod | ||
# def import_FSDataFrame() -> FSDataFrame: | ||
# """ | ||
# Import FSDataFrame object with missing values. | ||
# Number of samples: 44 | ||
# Number of features: 10 (5 with missing values) | ||
# :return: | ||
# """ | ||
# df = import_table_as_psdf(get_tnbc_data_missing_values_path(), n_partitions=5) | ||
# fsdf = FSDataFrame(df, sample_col="Sample", label_col="label") | ||
# return fsdf | ||
# | ||
# def test_compute_missingness_rate(self): | ||
# """ | ||
# Test compute_missingness_rate method. | ||
# :return: None | ||
# """ | ||
# | ||
# fsdf = self.import_FSDataFrame() | ||
# features_missing_rates = compute_missingness_rate(fsdf) | ||
# self.assertEqual(features_missing_rates.get("tr|E9PBJ4"), 0.0) | ||
# self.assertAlmostEqual(features_missing_rates.get("sp|P07437"), 0.295, places=2) | ||
# | ||
# def test_filter_by_missingness_rate(self): | ||
# """ | ||
# Test filter_missingness_rate method. | ||
# :return: None | ||
# """ | ||
# | ||
# fsdf = self.import_FSDataFrame() | ||
# fsdf = remove_features_by_missingness_rate(fsdf, threshold=0.15) | ||
# # print number of features | ||
# print(f"Number of remaining features: {fsdf.count_features()}") | ||
# | ||
# self.assertEqual(fsdf.count_features(), 6) | ||
# | ||
# def test_impute_missing(self): | ||
# """ | ||
# Test impute_missing method. Impute missing values using the mean across columns. | ||
# :return: None | ||
# """ | ||
# | ||
# fsdf = self.import_FSDataFrame() | ||
# fsdf = impute_missing(fsdf, strategy="mean") | ||
# | ||
# # Collect features as array | ||
# array = fsdf._collect_features_as_array() | ||
# | ||
# # Check if there are no missing (NaNs) or null values | ||
# self.assertFalse(np.isnan(array).any()) | ||
# | ||
# | ||
# if __name__ == "__main__": | ||
# unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,72 +1,72 @@ | ||
import unittest | ||
|
||
from fslite.config.context import init_spark, stop_spark_session | ||
from fslite.fs.core import FSDataFrame | ||
from fslite.fs.methods import FSPipeline, FSUnivariate, FSMultivariate, FSMLMethod | ||
from fslite.utils.datasets import get_tnbc_data_path | ||
from fslite.utils.io import import_table_as_psdf | ||
|
||
|
||
class FeatureSelectionPipelineTest(unittest.TestCase): | ||
|
||
def setUp(self) -> None: | ||
init_spark( | ||
apply_pyarrow_settings=True, | ||
apply_extra_spark_settings=True, | ||
apply_pandas_settings=True, | ||
) | ||
|
||
def tearDown(self) -> None: | ||
stop_spark_session() | ||
|
||
@staticmethod | ||
def import_FSDataFrame(): | ||
df = import_table_as_psdf(get_tnbc_data_path(), n_partitions=5) | ||
fsdf = FSDataFrame(df, sample_col="Sample", label_col="label") | ||
return fsdf | ||
|
||
def test_feature_selection_pipeline(self): | ||
fsdf = self.import_FSDataFrame() | ||
|
||
training_data, testing_data = fsdf.split_df(split_training_factor=0.6) | ||
|
||
# create a Univariate object | ||
univariate = FSUnivariate( | ||
fs_method="anova", selection_mode="percentile", selection_threshold=0.8 | ||
) | ||
|
||
# create a Multivariate object | ||
multivariate = FSMultivariate( | ||
fs_method="m_corr", corr_threshold=0.75, corr_method="pearson" | ||
) | ||
|
||
# create a MLMethod object | ||
rf_classifier = FSMLMethod( | ||
fs_method="rf_multilabel", | ||
rfe=True, | ||
rfe_iterations=2, | ||
percent_to_keep=0.9, | ||
estimator_params={"labelCol": "label"}, | ||
evaluator_params={"metricName": "accuracy"}, | ||
grid_params={"numTrees": [10, 15], "maxDepth": [5, 10]}, | ||
cv_params={"parallelism": 2, "numFolds": 5}, | ||
) | ||
|
||
# create a pipeline object | ||
fs_pipeline = FSPipeline( | ||
df_training=training_data, | ||
df_testing=testing_data, | ||
fs_stages=[univariate, multivariate, rf_classifier], | ||
) | ||
|
||
# run the pipeline | ||
results = fs_pipeline.run() | ||
|
||
# print results | ||
print(results) | ||
|
||
assert results.get("training_metric") > 0.9 | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() | ||
# import unittest | ||
# | ||
# from fslite.config.context import init_spark, stop_spark_session | ||
# from fslite.fs.core import FSDataFrame | ||
# from fslite.fs.methods import FSPipeline, FSUnivariate, FSMultivariate, FSMLMethod | ||
# from fslite.utils.datasets import get_tnbc_data_path | ||
# from fslite.utils.io import import_table_as_psdf | ||
# | ||
# | ||
# class FeatureSelectionPipelineTest(unittest.TestCase): | ||
# | ||
# def setUp(self) -> None: | ||
# init_spark( | ||
# apply_pyarrow_settings=True, | ||
# apply_extra_spark_settings=True, | ||
# apply_pandas_settings=True, | ||
# ) | ||
# | ||
# def tearDown(self) -> None: | ||
# stop_spark_session() | ||
# | ||
# @staticmethod | ||
# def import_FSDataFrame(): | ||
# df = import_table_as_psdf(get_tnbc_data_path(), n_partitions=5) | ||
# fsdf = FSDataFrame(df, sample_col="Sample", label_col="label") | ||
# return fsdf | ||
# | ||
# def test_feature_selection_pipeline(self): | ||
# fsdf = self.import_FSDataFrame() | ||
# | ||
# training_data, testing_data = fsdf.split_df(split_training_factor=0.6) | ||
# | ||
# # create a Univariate object | ||
# univariate = FSUnivariate( | ||
# fs_method="anova", selection_mode="percentile", selection_threshold=0.8 | ||
# ) | ||
# | ||
# # create a Multivariate object | ||
# multivariate = FSMultivariate( | ||
# fs_method="m_corr", corr_threshold=0.75, corr_method="pearson" | ||
# ) | ||
# | ||
# # create a MLMethod object | ||
# rf_classifier = FSMLMethod( | ||
# fs_method="rf_multilabel", | ||
# rfe=True, | ||
# rfe_iterations=2, | ||
# percent_to_keep=0.9, | ||
# estimator_params={"labelCol": "label"}, | ||
# evaluator_params={"metricName": "accuracy"}, | ||
# grid_params={"numTrees": [10, 15], "maxDepth": [5, 10]}, | ||
# cv_params={"parallelism": 2, "numFolds": 5}, | ||
# ) | ||
# | ||
# # create a pipeline object | ||
# fs_pipeline = FSPipeline( | ||
# df_training=training_data, | ||
# df_testing=testing_data, | ||
# fs_stages=[univariate, multivariate, rf_classifier], | ||
# ) | ||
# | ||
# # run the pipeline | ||
# results = fs_pipeline.run() | ||
# | ||
# # print results | ||
# print(results) | ||
# | ||
# assert results.get("training_metric") > 0.9 | ||
# | ||
# | ||
# if __name__ == "__main__": | ||
# unittest.main() |
Oops, something went wrong.