-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
70 lines (50 loc) · 1.7 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
import torch.nn as nn
import torch
import torch.nn as nn
import config
import loss as losses
criterion = losses.criterion
scaler = torch.cuda.amp.GradScaler()
def train(model, train_loader, device, optimizer):
model.train()
running_train_loss = 0.0
for data in train_loader:
inputs = data["image"]
masks = data["mask"]
## CUDA
inputs = inputs.to(device, dtype=torch.float)
masks = masks.to(device, dtype=torch.float)
## forward
with torch.cuda.amp.autocast():
outputs = model(
inputs,
)
loss = criterion(outputs, masks)
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
running_train_loss += loss.item()
train_loss_value = running_train_loss / len(train_loader)
print(f"train custom Loss is {train_loss_value}")
@torch.no_grad()
def evaluation(model, valid_loader, device):
model.eval()
running_dice_score = 0.0
running_val_loss = 0.0
for data in valid_loader:
inputs = data["image"]
masks = data["mask"]
inputs = inputs.to(device, dtype=torch.float)
masks = masks.to(device, dtype=torch.float)
output = model(
inputs,
)
running_val_loss += criterion(output, masks)
output = torch.sigmoid(output)
running_dice_score += losses.dice_metric(masks, output)
val_loss = running_val_loss / len(valid_loader)
dice_score = running_dice_score / len(valid_loader)
print(f"valid custom Loss is {val_loss}")
return dice_score