-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinference.py
316 lines (263 loc) · 14 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
'''
Date: 2023-05-26 10:19:09
LastEditors: zhangjian zhangjian@cecinvestment.com
LastEditTime: 2024-02-19 15:21:24
FilePath: /QC-wrist/inference.py
Description:
'''
import os
import yaml
import os
import time
import yaml
import numpy as np
import pydicom
import torch
import cv2
import models
from utils import get_landmarks_from_heatmap, visualize_in_evaluate
from eval import is_position_mark_api, is_position_mark, midpoint_of_StyloidProcess_is_center, line_of_LongAxis_is_vertical,\
include_radius_ulna, distance_from_StyloidProcess_to_edge, Scaphoid_is_center, line_of_StyloidProcess_is_horizontal,\
basic_information_completed, dose, radius_and_ulna_overlap, distal_radius_and_ulna_overlap, metacarpophalangeal_joint_is_included
def init_ai_model():
'''
initial the ai quality model
'''
print('Initializing the model at {} ...'.format(time.strftime("%Y-%m-%d %X", time.localtime())))
model_classify_position = models.__dict__[config['arch']['classify']](num_classes=config['num_classes']['classify'])
model_classify_artifact = models.__dict__[config['arch']['classify']](num_classes=config['num_classes']['classify'])
model_classify_overlap = models.__dict__[config['arch']['classify']](num_classes=config['num_classes']['classify'])
model_landmark_AP = models.__dict__[config['arch']['landmarks']['net']](num_classes=config['num_classes']['AP'], local_net=config['arch']['landmarks']['local_net'])
model_landmark_LAT = models.__dict__[config['arch']['landmarks']['net']](num_classes=config['num_classes']['LAT'], local_net=config['arch']['landmarks']['local_net'])
# 'torch.nn.DataParallel' will load model on the default CUDA
model_classify_position = torch.nn.DataParallel(model_classify_position)
model_classify_artifact = torch.nn.DataParallel(model_classify_artifact)
model_classify_overlap = torch.nn.DataParallel(model_classify_overlap)
model_landmark_AP = torch.nn.DataParallel(model_landmark_AP)
model_landmark_LAT = torch.nn.DataParallel(model_landmark_LAT)
# 'load_state_dict' starting to occupy the memory of GPU
model_classify_position.load_state_dict(torch.load(os.path.join('checkpoints/', config['checkpoints']['classify_position']))['state_dict'], strict=True)
model_classify_artifact.load_state_dict(torch.load(os.path.join('checkpoints/', config['checkpoints']['classify_artifact']))['state_dict'], strict=True)
model_classify_overlap.load_state_dict(torch.load(os.path.join('checkpoints/', config['checkpoints']['classify_overlap']))['state_dict'], strict=True)
model_landmark_AP.load_state_dict(torch.load(os.path.join('checkpoints/', config['checkpoints']['landmarks_AP']))['state_dict'], strict=True)
model_landmark_LAT.load_state_dict(torch.load(os.path.join('checkpoints/', config['checkpoints']['landmarks_LAT']))['state_dict'], strict=True)
use_cuda = torch.cuda.is_available()
if not use_cuda:
print('CUDA Device not found, exited at {} ...'.format(time.strftime("%Y-%m-%d %X", time.localtime())))
model_classify_position = model_classify_position.cuda()
model_classify_artifact = model_classify_artifact.cuda()
model_classify_overlap = model_classify_overlap.cuda()
model_landmark_AP = model_landmark_AP.cuda()
model_landmark_LAT = model_landmark_LAT.cuda()
return model_classify_position, model_classify_artifact, model_classify_overlap, model_landmark_AP, model_landmark_LAT
def inference(models, prending_list):
'''
evaluate the dicom by check tags completation and ai_quality_model, return the detail scores
'''
for model in models:
model.eval()
print('start inferencing at {} ...'.format(time.strftime("%Y-%m-%d %X", time.localtime())))
res_list = []
for i in prending_list:
dcmfile = os.path.join(config['dcmfile_path'], i)
df = pydicom.read_file(dcmfile, force=True)
if not hasattr(df.file_meta, 'TransferSyntaxUID'):
# DICOM defines a default Transfer Syntax, the DICOM Implicit VR Little Endian Transfer Syntax (UID = "1.2.840.10008.1.2 "),
# which shall be supported by every conformant DICOM Implementation.
df.file_meta.TransferSyntaxUID = pydicom.uid.ImplicitVRLittleEndian
df_pixel = df.pixel_array
if df.data_element('PresentationLUTShape').value == 'INVERSE':
max_value = np.max(df_pixel) # the value of max is 65535, represent the position word
second_max_value = sorted(list(set(df_pixel.flatten())), reverse=True)[1]
df_pixel = np.abs(df_pixel.astype(np.int32) - second_max_value)
scaled_df_pixel = (df_pixel - min(df_pixel.flatten())) / (second_max_value - min(df_pixel.flatten()))
else:
scaled_df_pixel = (df_pixel - min(df_pixel.flatten())) / (max(df_pixel.flatten()) - min(df_pixel.flatten()))
scaled_df_pixel = scaled_df_pixel*255
resized_df0 = cv2.resize(scaled_df_pixel, (config['input_size']['classify']['W'], config['input_size']['classify']['H']))
resized_df1 = cv2.resize(scaled_df_pixel, (config['input_size']['landmarks']['W'], config['input_size']['landmarks']['H']))
resized_df0 = np.stack((resized_df0,) * 3, axis=-1)
resized_df1 = np.stack((resized_df1,) * 3, axis=-1)
if np.max(resized_df1) > 1:
resized_df1 = (resized_df1 - 127.5) / 127.5
else:
resized_df1 = (resized_df1 - 0.5) * 2
df_tensor0 = torch.FloatTensor(np.expand_dims(resized_df0.transpose((2, 0, 1)), 0))
df_tensor1 = torch.FloatTensor(np.expand_dims(resized_df1.transpose((2, 0, 1)), 0))
df_tensor0 = df_tensor0.cuda()
df_tensor1 = df_tensor1.cuda()
df_tensor0 = torch.autograd.Variable(df_tensor0)
df_tensor1 = torch.autograd.Variable(df_tensor1)
try:
ProtocolName = df.data_element('ProtocolName').value
except:
ProtocolName = None
# position mark detection
# res_mark = is_position_mark(scaled_df_pixel, i)
res_mark = is_position_mark_api(scaled_df_pixel)
# model inferring
with torch.no_grad():
# classify for position and artifact
'''
对体位分类是一件困难的事情QAQ:
1.依赖模型做区分准确率会不够
2.依赖DICOM TAG信息的(理应如此), 此信息实际上也不是准确的
'''
res_classify_position = models[0](df_tensor0)
res_classify_artifact = models[1](df_tensor0)
# judge position & generate landmark
# if ProtocolName == '腕关节正位':
# flag = 'wrist-landmarks-AP'
# res_landmark = models[3](df_tensor1)
# elif ProtocolName == '腕关节侧位':
# flag = 'wrist-landmarks-LAT'
# # in LAT, an classify for overlap
# res_classify_overlap = models[2](df_tensor0)
# res_landmark = models[4](df_tensor1)
# else:
if res_classify_position[0][0].item() > res_classify_position[0][1].item():
flag = 'wrist-landmarks-AP'
res_landmark = models[3](df_tensor1)
else:
flag = 'wrist-landmarks-LAT'
res_classify_overlap = models[2](df_tensor0)
res_landmark = models[4](df_tensor1)
# release the cache of PyTorch&CUDA
# torch.cuda.empty_cache()
'''
return: True/False, True/False, List, True/False/None
'''
result = (res_mark,
res_classify_artifact[0][0].item() > res_classify_artifact[0][1].item(),
get_landmarks_from_heatmap(res_landmark.squeeze().detach(), project=flag),
res_classify_overlap[0][0].item() > res_classify_overlap[0][1].item() if 'LAT' in flag else None)
res_list.append(result)
'''
generate image which keeping original size with landmarks
'''
try:
size = df_pixel.shape
actual_coordinate = []
for c in result[2]:
ac = [(c[0]/config['input_size']['landmarks']['H'])*size[0], (c[1]/config['input_size']['landmarks']['W'])*size[1]]
ac = [int(ac[0]), int(ac[1])]
actual_coordinate.append(ac)
PixelSpacing = df.data_element('PixelSpacing').value
PixelSpacing = [float(PixelSpacing._list[0]), float(PixelSpacing._list[1])]
img = visualize_in_evaluate(input=cv2.merge([scaled_df_pixel, scaled_df_pixel, scaled_df_pixel]),
landmarks=actual_coordinate,
pixelspacing=PixelSpacing)
cv2.imwrite(os.path.join(config['save_path'], i.replace('dcm', 'png')), img)
except:
print('an exception occurred in generating images during visualizing-', str(i))
return res_list
def evaluate_each(dcmfile, coordinate, overlap, score_dict):
df = pydicom.read_file(dcmfile, force=True)
if not hasattr(df.file_meta, 'TransferSyntaxUID'):
df.file_meta.TransferSyntaxUID = pydicom.uid.ImplicitVRLittleEndian
size = df.pixel_array.shape
'''
calculate
'''
# This PixelSpacing is a 'relative PixelSpacing' in the resized img
PixelSpacing = df.data_element('PixelSpacing').value
PixelSpacing = [float(PixelSpacing._list[0]), float(PixelSpacing._list[1])]
actual_coordinate = []
for c in coordinate:
ac = [(c[0]/config['input_size']['landmarks']['H'])*size[0], (c[1]/config['input_size']['landmarks']['W'])*size[1]]
ac = [int(ac[0]), int(ac[1])]
actual_coordinate.append(ac)
'''
PixelSpacing: (H, W) = (y, x)
coordinate: (H, W) = (y, x)
size: (H, W) = (y, x)
'''
# AP
if overlap is None:
p1 = actual_coordinate[0]
p2 = actual_coordinate[1]
p3 = actual_coordinate[2]
s1 = metacarpophalangeal_joint_is_included(p1)
s2, gap0, gap1 = midpoint_of_StyloidProcess_is_center(p2, p3, PixelSpacing, size)
s3, angle_yaxis = line_of_StyloidProcess_is_horizontal(p2, p3, size)
# 无指掌关节时,会影响下缘方位判断
if s1 != 0:
s4, distance_from_lowest = include_radius_ulna(p1, p2, p3, PixelSpacing, size)
else:
s4, distance_from_lowest = 0, 'NaN'
s5, distance_l, distance_r = distance_from_StyloidProcess_to_edge(p2, p3, PixelSpacing, size)
layout_score = s1 + s2 + s3 + s4 + s5
score_dict['上缘包含拇指指掌关节'] = s1
score_dict['尺桡骨茎突连线中点位于图像正中'] = {'score': s2, '轴1方向差值': gap0, '轴2方向差值': gap1}
score_dict['尺桡骨茎突连线与影像纵轴垂直'] = {'score': s3, '纵轴角度': angle_yaxis}
score_dict['下缘包含尺桡骨3-5cm'] = {'score': s4, '尺桡骨长度': distance_from_lowest}
score_dict['左右最外侧距影像边缘3-5cm'] = {'score': s5, '左侧茎突距离': distance_l, '右侧茎突距离': distance_r}
# LAT
else:
p1 = actual_coordinate[0]
p2 = actual_coordinate[1]
p3 = actual_coordinate[2]
p4 = actual_coordinate[3]
p5 = actual_coordinate[4]
s1, gap0, gap1 = Scaphoid_is_center(p1, PixelSpacing, size)
s2, angle_yaxis = line_of_LongAxis_is_vertical(p1, p3, p5, size)
# s3 = 9 if overlap else 0
# s3 = radius_and_ulna_overlap(p2, p3, p4, p5)
s4, angleP1 = distal_radius_and_ulna_overlap(p1, p2, p4)
layout_score = s1 + s2 + s4
score_dict['舟骨位于图像正中'] = {'score': s1, '轴1方向差值': gap0, '轴2方向差值': gap1}
score_dict['腕关节长轴与影像纵轴平行'] = {'score': s2, '纵轴角度': angle_yaxis}
# score_dict['尺桡骨重叠'] = True if s3==9 else False
score_dict['尺桡骨远端重叠'] = {'score': s4, '远端夹角角度': angleP1}
score_basic = basic_information_completed(df)
score_dose = dose(df)
dcm_score = layout_score + score_basic + 0
score_dict['基本信息完整度'] = score_basic
score_dict['辐射剂量(<5mGy)'] = score_dose
return dcm_score, score_dict
def main():
import argparse
global config
parser = argparse.ArgumentParser(description='workflow of QC in wrist')
# model related, including Architecture, path, datasets
parser.add_argument('--config-file', type=str, default='configs/config_inference.yaml')
parser.add_argument('--gpu-id', type=str, default='1,2,3')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
with open(args.config_file) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
models = init_ai_model()
'''
Obtain a list of files to be inferred
'''
prending_list = [f for f in os.listdir(config['dcmfile_path']) if not f.startswith('.')]
res_inference = inference(models, prending_list)
print('scoring each image starting from {} ...'.format(time.strftime("%Y-%m-%d %X", time.localtime())))
res_dict = dict()
for res, path in zip(res_inference, prending_list):
score_dict = dict()
score = 0
dcmfile = os.path.join(config['dcmfile_path'], path)
score_dict['左右标识'] = res[0]
if res[0]:
score += 20
score_dict['异物伪影'] = res[1]
if res[1]:
score += 0
else:
score += 10
dcm_score, score_dict = evaluate_each(dcmfile, res[2], res[3], score_dict)
score += dcm_score
if res[0]:
res_dict[str(path)] = score
else:
res_dict[str(path)] = 0
res_dict['details of '+str(path)] = score_dict
import json
json_str = json.dumps(res_dict, ensure_ascii=False)
f = open('inference_result/inference.json', 'w')
f.write(json_str)
f.close()
print('{} cases have been inferred and scored, completed at {}'.format(len(prending_list), time.strftime("%Y-%m-%d %X", time.localtime())))
if __name__ == '__main__':
main()