Skip to content

bentoml/openllm-models

Repository files navigation

The default model repository of openllm

This repo (on main branch) is already included by openllm by default.

If you want more up-to-date untested models, please add our nightly branch.

openllm repo add nightly https://github.com/bentoml/openllm-models@nightly

Supported Models

$ openllm repo update
$ openllm model list
model                version                                              repo     required GPU RAM    platforms
-------------------  ---------------------------------------------------  -------  ------------------  -----------
codestral            codestral:22b-v0.1-fp16-7231                         default  80G                 linux
deepseek-r1-distill  deepseek-r1-distill:qwen2.5-14b-fp16-44c7            default  80G                 linux
                     deepseek-r1-distill:qwen2.5-32b-fp16-29c6            default  80G                 linux
                     deepseek-r1-distill:qwen2.5-7b-math-fp16-761e        default  24G                 linux
                     deepseek-r1-distill:qwen2.5-1.5b-math-fp16-5e2f      default  12G                 linux
                     deepseek-r1-distill:llama3.1-8b-fp16-f208            default  24G                 linux
                     deepseek-r1-distill:llama3.3-70b-instruct-fp16-5b46  default  80Gx2               linux
deepseek-v3          deepseek-v3:671b-instruct-fp8-70d7                   default  80Gx16              linux
gemma                gemma:2b-instruct-fp16-1320                          default  12G                 linux
                     gemma:7b-instruct-fp16-10bb                          default  24G                 linux
                     gemma:7b-instruct-awq-4bit-a9cb                      default  12G                 linux
gemma2               gemma2:9b-instruct-fp16-fdaa                         default  24G                 linux
                     gemma2:27b-instruct-fp16-c1e5                        default  80G                 linux
jamba1.5             jamba1.5:mini-fp16-3615                              default  80Gx4               linux
llama2               llama2:7b-chat-fp16-81cf                             default  16G                 linux
                     llama2:7b-chat-awq-4bit-cc6f                         default  12G                 linux
                     llama2:13b-chat-fp16-49e4                            default  40G                 linux
                     llama2:70b-chat-fp16-cc77                            default  80Gx2               linux
llama3               llama3:8b-instruct-fp16-9cf8                         default  24G                 linux
                     llama3:8b-instruct-awq-4bit-794a                     default  12G                 linux
                     llama3:70b-instruct-fp16-7265                        default  80Gx2               linux
                     llama3:70b-instruct-awq-4bit-f693                    default  80G                 linux
llama3.1             llama3.1:8b-instruct-fp16-cbdd                       default  24G                 linux
                     llama3.1:8b-instruct-awq-4bit-b149                   default  12G                 linux
                     llama3.1:70b-instruct-fp16-d198                      default  80Gx2               linux
                     llama3.1:70b-instruct-awq-4bit-e86e                  default  80G                 linux
                     llama3.1:405b-instruct-awq-4bit-bbd0                 default  80Gx4               linux
llama3.1-nemotron    llama3.1-nemotron:70b-instruct-fp16-8d09             default  80Gx2               linux
llama3.2             llama3.2:1b-instruct-fp16-ce2d                       default  12G                 linux
                     llama3.2:1b-instruct-ggml-fp16-linux-08c5            default                      linux
                     llama3.2:1b-instruct-ggml-fp16-darwin-12f1           default                      macos
                     llama3.2:3b-instruct-fp16-be73                       default  12G                 linux
                     llama3.2:11b-vision-instruct-714f                    default  80G                 linux
llama3.3             llama3.3:70b-instruct-fp16-419e                      default  80Gx2               linux
mistral              mistral:7b-instruct-fp16-26bd                        default  24G                 linux
                     mistral:7b-instruct-awq-4bit-ae66                    default  12G                 linux
                     mistral:24b-instruct-nemo-c545                       default  80G                 linux
mistral-large        mistral-large:123b-instruct-fp16-ce3a                default  80Gx4               linux
                     mistral-large:123b-instruct-awq-4bit-13a5            default  80G                 linux
mixtral              mixtral:8x7b-instruct-v0.1-fp16-04ce                 default  80Gx2               linux
                     mixtral:8x7b-instruct-v0.1-awq-4bit-4fc7             default  40G                 linux
phi3                 phi3:3.8b-instruct-fp16-d530                         default  12G                 linux
                     phi3:3.8b-instruct-ggml-q4-ccda                      default                      macos
phi4                 phi4:14b-fp16-b79c                                   default  80G                 linux
pixtral              pixtral:12b-240910-dd99                              default  80G                 linux
qwen2                qwen2:0.5b-instruct-fp16-750b                        default  12G                 linux
                     qwen2:1.5b-instruct-fp16-accb                        default  12G                 linux
                     qwen2:7b-instruct-fp16-7323                          default  24G                 linux
                     qwen2:7b-instruct-awq-4bit-8b5f                      default  12G                 linux
                     qwen2:57b-a14b-instruct-fp16-d5bd                    default  80Gx2               linux
                     qwen2:72b-instruct-fp16-7c3c                         default  80Gx2               linux
                     qwen2:72b-instruct-awq-4bit-2b3b                     default  80G                 linux
qwen2.5              qwen2.5:0.5b-instruct-fp16-7751                      default  12G                 linux
                     qwen2.5:1.5b-instruct-fp16-2705                      default  12G                 linux
                     qwen2.5:3b-instruct-fp16-047a                        default  12G                 linux
                     qwen2.5:7b-instruct-fp16-2c87                        default  24G                 linux
                     qwen2.5:14b-instruct-fp16-8019                       default  80G                 linux
                     qwen2.5:14b-instruct-ggml-q4-darwin-5f24             default                      macos
                     qwen2.5:14b-instruct-ggml-q8-darwin-8b4f             default                      macos
                     qwen2.5:32b-instruct-fp16-4839                       default  80G                 linux
                     qwen2.5:32b-instruct-awq-4bit-cc8d                   default  40G                 linux
                     qwen2.5:32b-instruct-ggml-fp16-darwin-028b           default                      macos
                     qwen2.5:72b-instruct-fp16-9475                       default  80Gx2               linux
                     qwen2.5:72b-instruct-ggml-q4-darwin-7e2c             default                      macos
qwen2.5-coder        qwen2.5-coder:7b-instruct-3c9a                       default  24G                 linux
                     qwen2.5-coder:7b-instruct-ggml-fp16-linux-6e86       default                      linux
                     qwen2.5-coder:7b-instruct-ggml-fp16-darwin-dc3a      default                      macos
                     qwen2.5-coder:32b-instruct-2ca2                      default  80G                 linux
qwen2vl              qwen2vl:7b-instruct-fp16-3da6                        default  24G                 linux

Development Guide

Open PRs to the nightly branch to add new models or update existing models.

You can also fork this repo and add your own models.

Use openllm repo add to use your own model repository.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published