-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
36 lines (25 loc) · 908 Bytes
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from tensorflow import keras
from util import clean_text
from tokenizer import load_tokenizer
import numpy as np
def load_model():
json_file = open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = keras.models.model_from_json(loaded_model_json)
loaded_model.load_weights('model.h5')
return loaded_model
def predict_sentiment(texts):
model = load_model()
tokenizer = load_tokenizer()
for text in texts:
texts[texts.index(text)] = clean_text(text)
texts = np.array(texts)
sequences = tokenizer.texts_to_sequences(texts)
data = keras.preprocessing.sequence.pad_sequences(sequences, maxlen=50)
prediction = model.predict(data)
keras.backend.clear_session()
return prediction.tolist()
if __name__ == '__main__':
test = ["Testing can be fun if it works!"]
print(predict_sentiment(test))