-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
115 lines (98 loc) · 4.11 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
from docplex.cp.model import *
import matplotlib.pyplot as plt
import plotly.figure_factory as ff
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import plotly.express as px
import pandas as pd
import time
import math
def gantt(sequences, name='gantt', title=''):
"""
:param sequences: list of lists of job properties
:return:
"""
df = []
cumulated_pt_prior = [0. for _ in range(N_MACHINES)]
for m in range(len(sequences)):
for j, job in enumerate(sequences[m]):
df.append({
'Task': m,
'Start': cumulated_pt_prior[m],
'Finish': cumulated_pt_prior[m] + job['pt'],
'Delay': max(0, cumulated_pt_prior[m] + job['pt'] - job['dd']),
'Delta': job['pt'],
'Name': job['id']
})
cumulated_pt_prior[m] += job['pt'] + SMALL_SETUP_PENALTY
if j < len(sequences[m]) - 1 and sequences[m][j+1]['type'] != job['type']:
cumulated_pt_prior[m] += LARGE_SETUP_PENALTY - SMALL_SETUP_PENALTY
df = pd.DataFrame(df)
fig = px.timeline(df, x_start="Start", x_end="Finish", y="Task", color="Delay", #text="Name",
color_continuous_scale='Hot', range_color=[0, 20000], range_x=[0, 20000])
fig.update_layout(xaxis_title="Timesteps", yaxis_title="Machine")
# fig.update_traces(showlegend=False)
fig.update_annotations(align='center')
fig.layout.xaxis.type = 'linear'
fig.layout.yaxis.tickvals = [m for m in range(N_MACHINES)]
fig.update_layout(template="plotly_white")
fig.update_layout(title=title)
# fig.update_coloraxes(colorbar_tickmode='array')
# fig.update_coloraxes(colorbar_tickvals=[0,100])
# this is necessary for a int/float x axis
for i, d in enumerate(fig.data):
fig.data[0].x = df['Delta'].tolist()
return fig
def calc_true_tardiness(sequence):
sum = 0.0
for m in range(N_MACHINES):
delay = 0.0
for j in range(len(sequence[m])):
sum += max(0, sequence[m][j]['pt'] + delay - sequence[m][j]['dd'])
delay += sequence[m][j]['pt'] + SMALL_SETUP_PENALTY
if j > 0 and sequence[m][j]['type'] != sequence[m][j-1]['type']:
delay += LARGE_SETUP_PENALTY - SMALL_SETUP_PENALTY
return sum
def calc_true_makespan(sequence):
makespan = [0. for _ in range(N_MACHINES)]
for m in range(N_MACHINES):
for j in range(len(sequence[m])):
makespan[m] += sequence[m][j]['pt'] + SMALL_SETUP_PENALTY
if j > 0 and sequence[m][j]['type'] != sequence[m][j-1]['type']:
makespan[m] += LARGE_SETUP_PENALTY - SMALL_SETUP_PENALTY
return max(makespan)
N_MACHINES = 4
SMALL_SETUP_PENALTY = 25
LARGE_SETUP_PENALTY = 65
problem_path = './data/J100S10.dat'
solution_paths = [
# './results/optimised_job_list_EDD_full.dat',
# './results/optimised_job_list_ant_colony_full.dat',
# './results/optimised_job_list_genetic_full.dat',
# './results/optimised_job_list_A3C_full.dat',
'./results/optimised_job_list_sim_anneal.dat'
]
for ID, name in enumerate(['SA']): # 'EDD', 'Ant', 'Gen', 'A3C',
jobs = []
with open(problem_path) as job_list_in:
for count, line in enumerate(job_list_in.readlines()):
id, due_date, type, p_time = line.split()
jobs.append({
'id': int(id), 'dd': float(due_date),
'type': int(type), 'pt': float(p_time)
})
solution_path = solution_paths[ID]
sequences = [[] for _ in range(N_MACHINES)]
with open(solution_path) as job_list_in:
for count, line in enumerate(job_list_in.readlines()):
if count == 0:
continue
j, _, _, _, _, m = line.split()
sequences[int(m) - 1].append(jobs[int(j) - 1])
tardiness = calc_true_tardiness(sequences)
makespan = calc_true_makespan(sequences)
title = 'Makespan: {:.2f} | Tardiness {:.2f}'.format(makespan, tardiness)
fig = gantt(sequences, name='sim_anneal', title=title)
fig.write_image('./figures/{}.pdf'.format(name))
fig.show()