-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerator.py
41 lines (30 loc) · 1.44 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
import pandas as pd
def gen_processing_time(mean=10, stdd=10):
return abs(np.random.normal(mean * np.arange(N_JOBS), np.full(N_JOBS, stdd)))
def gen_due_date(processing_times, stdd=10):
# mean_ptime = np.mean(processing_times)
# due_date_offsets = np.random.normal(mean_ptime * np.arange(N_JOBS), np.full(N_JOBS, stdd))
# return processing_times + due_date_offsets
due_dates = abs(np.random.normal(len(processing_times), np.full(N_JOBS, stdd))) * np.arange(N_JOBS)
due_dates = due_dates[np.random.permutation(len(processing_times))]
return processing_times + due_dates
def gen_setup():
return np.random.randint(0, N_TYPES, N_JOBS)
for N_JOBS in [10, 50, 100, 500, 1000]:
N_MACHINES = 4
N_TYPES = 10
PATH = './data/J{}S{}'.format(N_JOBS, N_TYPES)
processing_times = gen_processing_time(mean=10, stdd=10)
due_dates = gen_due_date(processing_times, stdd=10)
setups = gen_setup()
# print([(p, d) for p, d in zip(processing_times, due_dates)])
df = pd.DataFrame([{'id': i, 'pt': pt, 'dd': dd, 'type': type}
for i, (pt, dd, type) in enumerate(zip(processing_times, due_dates, setups))])
df.to_pickle(PATH + ".pkl")
# df = pd.read_pickle(PATH + ".pkl")
with open(PATH + ".dat", 'w+') as f:
for index, row in df.iterrows():
f.write('{}\t{}\t{}\t{}\n'.format(
int(row[0]), row[2], int(row[3]), row[1]
))