-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathitemset_mining.r
258 lines (197 loc) · 9.47 KB
/
itemset_mining.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
require(arules)
require(arulesViz)
require(tikzDevice)
base_dir = '/Users/benny/Repositories/recipes/paper'
tables_dir = file.path(base_dir, 'tables')
plots_dir = file.path(base_dir, 'plots')
saveTikz <- function(plt, filename, width = 4.9823, ratio = 1.618) {
height <- width/ratio
filename <- file.path(plots_dir, filename)
tikz(file = filename, width = width, height = height)
replayPlot(plt)
dev.off()
}
# Load data
filename <- '/Users/benny/Repositories/recipes/data/recipes.single'
Recipes = read.transactions(filename, format='single', sep=',', cols=seq(1, 2))
# Create summary
summary(Recipes)
# Mine rules using Apriori
rules <- apriori(Recipes, parameter=list(support=0.02, confidence=0.5))
# Top 3 rules according to lift
inspect(head(sort(rules, by ="lift"), 10))
top10 <- as(head(sort(rules, by ="lift"), 10), 'data.frame')
write.table(top10, file.path(tables_dir, 'rules_top10.dat'), sep = ';', col.names = TRUE, row.names = FALSE)
# Scatter plot
plot(rules)
# The quality() function prints out quality scores for rules
head(quality(rules))
# Two-key plot plots support against confidence, with the 'order'
# indicated by color, which is the number of items
plot(rules, shading="order", control=list(main = "Two-key plot"))
# Interactive plot
sel <- plot(rules, measure=c("support", "lift"), shading="confidence", interactive=TRUE)
# Select rules with confidence > 0.9
subrules <- rules[quality(rules)$confidence > 0.9]
plot(subrules, method="matrix", measure="lift")
# reordering rows and columns in the matrix such that rules with similar values of the interest measure are presented closer together
plot(subrules, method="matrix", measure="lift", control=list(reorder=TRUE))
# Same thing, interactive
plot(subrules, method="matrix", measure="lift", control=list(reorder=TRUE), interactive=TRUE)
# Plot in 3D (less intuitive!)
plot(subrules, method="matrix3D", measure="lift", control=list(reorder=TRUE))
# Two measures combined in one coloring grid
plot(subrules, method="matrix", measure=c("lift", "support"), control=list(reorder=TRUE))
plot(subrules, method="matrix", measure=c("confidence", "support"), control=list(reorder=TRUE))
# Grouping statistically dependent consequents (LHS) allows to plot many more rules
many_rules <- apriori(Recipes, parameter=list(support=0.01, confidence=0.3))
plot(many_rules, method="grouped")
# Select some rules with high lift
subrules2 <- head(sort(rules, by="lift"), 20)
# Plotting makes things cluttered...
#plot(subrules2, method="graph")
# ... while vertices = itemsets and edges = rules is pretty nice
plot(subrules2, method="graph", control=list(type="itemsets"))
# Export to Gephi!!
# NOTE: here we quickly found there seem to be two clusterd ('hartig' en 'zoetig'?)
saveAsGraph(head(sort(rules, by="lift"),200), file="rules2.graphml")
plot(subrules2, method="paracoord", control=list(reorder=TRUE))
# Double decker plot
oneRule <- sample(rules, 1)
inspect(oneRule)
plot(oneRule, method="doubledecker", data = Recipes)
set.seed(1234)
s <- sample(Recipes, 2000)
d <- dissimilarity(s, method = "Jaccard")
library("cluster")
clustering <- pam(d, k = 16)
plot(clustering)
# Prediction based on clustering
allLabels <- predict(s[clustering$medoids], Recipes, method = "Jaccard")
cluster <- split(Recipes, allLabels)
itemFrequencyPlot(cluster[[1]], population = s, support = 0.05)
itemFrequencyPlot(cluster[[2]], population = s, support = 0.05) # Sweet pastries?
itemFrequencyPlot(cluster[[3]], population = s, support = 0.05) # Greek?
itemFrequencyPlot(cluster[[4]], population = s, support = 0.05)
itemFrequencyPlot(cluster[[5]], population = s, support = 0.05) # Apple based sweet pasties?
itemFrequencyPlot(cluster[[6]], population = s, support = 0.05)
itemFrequencyPlot(cluster[[7]], population = s, support = 0.05)
itemFrequencyPlot(cluster[[8]], population = s, support = 0.05)
clustering <- pam(d, k = 2)
allLabels <- predict(s[clustering$medoids], Recipes, method = "Jaccard")
cluster <- split(Recipes, allLabels)
itemFrequencyPlot(cluster[[1]], population = s, support = 0.05) # Hartig
itemFrequencyPlot(cluster[[2]], population = s, support = 0.05) # Zoet
# Supplement a recipe
chickenRules <- subset(rules, subset = rhs %in% "chicken")
# Cool result:
# 461 {carrot,celery stalks} => {chicken} 0.01029268 0.5436782 2.993976
require(ggplot2)
require(RColorBrewer)
require(plyr)
# Plot ingredient distribution
y <- sort(itemFrequency(Recipes, type = 'abs'), decreasing = TRUE)
n <- length(y)
x <- 1:n
# Data
data <- data.frame(x=x, y=y, group='Data')
# Fit linear line on logarithmic data
fit <- lm(log(y) ~ x, data=data.frame(x=x, y=y))
fitvals <- exp(fit$fitted.values)
data2 <- data.frame(x=x, y=fitvals, group='Regression')
# Plot
library(tikzDevice)
plots_dir = '/Users/benny/Repositories/recipes/paper/plots'
phi <- 1.618
width <- 4.9823
height <- width/phi
filename <- file.path(plots_dir, 'ingredient_frequencies.tex')
tikz(file = filename, width = width, height = height)
ggplot() + aes(x=x, y=y, color=group) +
geom_point(data=data, size=.5) +
geom_line(data=data2, linetype='dashed', size=.8) +
scale_y_log10() +
scale_color_brewer(palette = 'Set1') +
ggtitle('Ingredient frequencies on a logarithmic scale') +
labs(x='Ingredients', y='Frequency') +
theme(plot.title = element_text(size=12),
legend.title = element_blank(),
legend.justification=c(1,1),
legend.position=c(1,1))
dev.off()
# Save table
mod_stargazer <- function(output.file, ...) {
output <- capture.output(stargazer(...))
cat(paste(output, collapse = "\n"), file=output.file, sep="\n", append=FALSE)
}
tables_dir <- '/Users/benny/Repositories/recipes/paper/tables'
top <- sort(itemFrequency(Recipes, type='abs'), decreasing = TRUE)
topN <- top[1:10]
t <- data.frame(Ingredient=names(topN), Frequency=unname(topN), Relative=unname(topN)/sum(top))
filename <- file.path(tables_dir, 'ingredients_top10.tex')
mod_stargazer(filename, t, summary=FALSE, digit.separator=' ')
filename <- filename <- file.path(tables_dir, 'ingredients_top10.dat')
write.table(t, file = filename, quote = FALSE, sep = ";",
row.names = FALSE, col.names = TRUE)
library(party)
f <- function(v) {v <= 1000}
a <- as(Recipes[1:2000], 'matrix')
b <- cbind(a, sapply(1:2000, f))
dimnames <- attr(b, 'dimnames')
dimnames[[2]][404] <- 'class'
attr(b, 'dimnames') <- dimnames
data = data.frame(b)
#tree <- ctree(class ~ pepper + salt, data = data)
tinfo <- as(transactionInfo(Recipes), 'list')[[1]] # Get list of index -> tid
tid_to_index <- hashmap(tinfo, sapply(1:length(tinfo), toString))
good_tids <- unlist(recipes_good@data@Dimnames[[2]])
bad_tids <- unlist(recipes_bad@data@Dimnames[[2]])
GoodRecipes <- Recipes[tid_to_index[[good_tids]]]
BadRecipes <- Recipes[tid_to_index[[bad_tids]]]
good <- as(GoodRecipes, 'matrix')
bad <- as(BadRecipes, 'matrix')
good <- cbind(good, 1)
bad <- cbind(bad, 2)
data <- rbind(good, bad)
dimnames <- attr(data, 'dimnames')
dimnames[[2]][404] <- 'class'
attr(data, 'dimnames') <- dimnames
write.csv(data, 'good_bad.csv')
# Frequency of item pairs
X <- as(Recipes, 'matrix')
X <- sapply(as.data.frame(X), as.numeric)
out <- crossprod(X) # Same as: t(X) %*% X
diag(out) <- 0
library("recommenderlab")
algorithms <- list("random items" = list(name = "RANDOM", param = NULL),
"popular items" = list(name = "POPULAR", param = NULL),
"association rules (0.001)" = list(name = "AR", param = list(support = 0.001,confidence=0.1, maxlen=3)))
#"association rules (0.01)" = list(name = "AR", param = list(support = 0.01)),
#"association rules (0.05)" = list(name = "AR", param = list(support = 0.05)),
#"association rules (0.1)" = list(name = "AR", param = list(support = 0.1)),
#"item-based CF (k=3)" = list(name = "IBCF", param = list(k = 3)),
#"item-based CF (k=5)" = list(name = "IBCF", param = list(k = 5)),
#"item-based CF (k=10)" = list(name = "IBCF", param = list(k = 10)),
"item-based CF (k=20)" = list(name = "IBCF", param = list(k = 20)),
#"item-based CF (k=30)" = list(name = "IBCF", param = list(k = 30)),
"item-based CF (k=40)" = list(name = "IBCF", param = list(k = 40)),
#"item-based CF (k=50)" = list(name = "IBCF", param = list(k = 50)),
"item-based CF (k=200)" = list(name = "IBCF", param = list(k = 200)))
#"item-based CF (k=40)" = list(name = "IBCF", param = list(k = 40, method='dice')),
#"item-based CF (k=200)" = list(name = "IBCF", param = list(k = 200, method='dice')))
#"item-based CF (k=402)" = list(name = "IBCF", param = list(k = 402)))
#"user-based CF (Jaccard)" = list(name = "UBCF", param = list(nn = 50, method = 'jaccard')))
#"user-based CF (Pearson)" = list(name = "UBCF", param = list(nn = 50, method = 'pearson')))
Recipes_binary <- as(Recipes, 'binaryRatingMatrix')
Recipes_binary <- Recipes_binary[rowCounts(Recipes_binary) > 5]
scheme <- evaluationScheme(Recipes_binary, method="split", train=.9, k=1, given=2)
results2 <- evaluate(scheme, algorithms, progress = TRUE,
type = "topNList", n=c(1,3,5,10))
nms <- c('Random items', 'Popular items', 'AR s=0.01',
'AR s=0.05', 'AR s=0.1', 'IBCF k=20', 'IBCF k=40',
'IBCF k=200')
names(results2) <- nms
plot(results2, annotate=c(1,3,7))
title('ROC curve for ingredient recommendation')
plt <- recordPlot()
saveTikz(plt, 'ingredients_recommendations_given2.tex')