Skip to content

Latest commit

ย 

History

History
141 lines (85 loc) ยท 43.2 KB

publications-using-hctsa.md

File metadata and controls

141 lines (85 loc) ยท 43.2 KB
description cover coverY
This page lists scientific research publications that have used hctsa.
0

Publications using hctsa

Articles are labeled as follows:

  • ๐Ÿ“— = Journal publication.
  • ๐Ÿ“™ = Preprint.
  • ๐Ÿ’ป = Link to GitHub code repository available.

If you have used hctsa in your published work, or we have missed any publications, feel free to reach out by email and we'll add it this growing list!


Our Research ๐Ÿ“•

Methods Papers

The following publications for details of how the highly-comparative approach to time-series analysis has developed since our initial publication in 2013. We:

Reduced the hctsa feature library down to a reduced set of 22 efficiently coded features: catch22.

๐Ÿ“— Data Mining and Knowledge Discovery 33, 1821 (2019).

๐Ÿ’ป catch22 Code.

10618_2019_647_Fig5_HTML.png.webphttps://link.springer.com/article/10.1007/s10618-019-00647-x

Developed a software package for highly-comparative time-series analysis, hctsa (includes applications to high throughput phenotyping of C. Elegans and Drosophila movement time series).

๐Ÿ“— Cell Systems 5, 527 (2017).

๐Ÿ’ป Code (fly).

๐Ÿ’ป Code (worm).

Screenshot 2024-05-11 at 6.27.14โ€ฏam (1).pnghttps://www.cell.com/cell-systems/fulltext/S2405-4712(17)30438-6

Introduced the feature-based time-series analysis methodology.

๐Ÿ“— Feature Engineering for Machine Learning and Data Analytics, CRC Press (2018).

๐Ÿ“™ Preprint.

Screenshot 2024-05-11 at 6.32.02โ€ฏam.pnghttps://www.crcpress.com/Feature-Engineering-for-Machine-Learning-and-Data-Analytics/Dong-Liu/p/book/9781138744387

Showed that the behaviour of thousands of time-series methods on thousands of different time series can be used to organise the interdisciplinary time-series analysis literature.

๐Ÿ“— J. Roy. Soc. Interface (2013).

rsif20130048f05.jpghttps://royalsocietypublishing.org/doi/full/10.1098/rsif.2013.0048

Applications Papers

We have used hctsa to:

Find dynamical signatures of psychiatric disorders from resting-state fMRI data.

๐Ÿ“™ bioRxiv (2023).

Screenshot 2024-05-10 at 2.05.57โ€ฏpm.pnghttps://www.biorxiv.org/content/10.1101/2024.01.10.573372v1

Predict individual response to rTMS depression treatment from EEG data.

๐Ÿ“™ medRxiv (2023).

Screenshot 2024-05-10 at 2.08.30โ€ฏpm.pnghttps://www.medrxiv.org/content/10.1101/2023.10.24.23297492v1

Distinguish meditators from non-meditators from 30s of resting-state EEG data.

๐Ÿ“— Neural Networks (2023).

1-s2.0-S0893608023007013-gr1.jpghttps://www.sciencedirect.com/science/article/pii/S0893608023007013?via%3Dihub

Identify neurophysiological signatures of cortical micro-architecture.

๐Ÿ“— Nature Comms. (2023).

41467_2023_41689_Fig1_HTML.png.webphttps://www.nature.com/articles/s41467-023-41689-6

Classify stars from NASA's Kepler Mission.

๐Ÿ“— Monthly Notices of the Royal Astronomical Society (2022).

stac1515fig2.jpeghttps://academic.oup.com/HTTPHandlers/Sigma/LoginHandler.ashx?error=login_required&state=3b05040c-72f2-4071-a0fa-043c19da7236redirecturl%3Dhttpszazjzjacademiczwoupzwcomzjmnraszjarticlezj514zj2zj2793zj6598817

Determine how striatal neuromodulation affects brain dynamics in thalamus and cortex.

๐Ÿ“— eLife (2023).

Screenshot 2024-05-10 at 2.22.19โ€ฏpm.pnghttps://elifesciences.org/articles/78620

Uncover the dynamical structure of sleep EEG.

๐Ÿ“— Sleep Medicine (2022).

1-s2.0-S1389945722010516-ga1_lrg.jpghttps://www.sciencedirect.com/science/article/pii/S1389945722010516?via%3Dihub

Show how gradients of variation in time-series properties of BOLD dynamics vary with physiological variation and structural connectivity in the human neocortex.

๐Ÿ“— eLife (2020).

lax_62116_elife-62116-fig1-v2.tif.pnghttps://elifesciences.org/articles/62116

Distinguish targeted perturbations to mouse fMRI dynamics.

๐Ÿ“— Cerebral Cortex (2020).

๐Ÿ’ป Code.

F4.large.jpghttps://academic.oup.com/cercor/article/30/9/4922/5823074?login=false

as well as:


Others' Research ๐Ÿ“•

๐Ÿงฌ Biology

Extract acoustic features from social vocal accommodation in adult marmoset monkeys.

๐Ÿ“™ bioRxiv (2023).

Screenshot 2024-05-10 at 3.15.52โ€ฏpm.pnghttps://www.biorxiv.org/content/10.1101/2023.09.22.559020v1

Track Drosophila in real time for high-throughput behavioural phenotyping.

๐Ÿ“— eLife (2023).

Screenshot 2024-05-10 at 3.20.27โ€ฏpm.pnghttps://elifesciences.org/articles/86695

Detect anger from photoplethysmography (PPG) sensors.

๐Ÿ“— Journal of NeuroEngineering and Rehabilitation (2023).

12984_2023_1217_Fig5_HTML.pnghttps://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-023-01217-5

Identify and distinguish marmoset vocalisations from audio, using Adaboost feature selection from hctsa features.

๐Ÿ“— J. Roy. Soc. Interface (2023).

Screenshot 2024-05-10 at 3.22.07โ€ฏpm.pnghttps://royalsocietypublishing.org/doi/10.1098/rsif.2023.0399

Discriminate zebra finch songs in different social contexts.

๐Ÿ“— PLoS Computational Biology (2021).

journal.pcbi.1008820.g003.tif.pnghttps://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008820

Distinguish electromagnetic field exposure from zebrafish locomotion time series.

๐Ÿ“— Sensors (2020).

sensors-20-04818-g005.pnghttps://www.mdpi.com/1424-8220/20/17/4818

๐Ÿงซ Cellular Neuroscience

Confirm the role of ยตORs in VTA and NAc in acute fentanyl-induced behaviour (positive reinforcement).

๐Ÿ“— Chaudun et al., Nature (2024).

https://www.nature.com/articles/s41586-024-07440-xScreenshot 2024-05-28 at 10.30.28.png

Assess stress-induced changes in astrocyte calcium dynamics.

๐Ÿ“— Nature Comms. (2020).

https://www.nature.com/articles/s41467-020-15778-9Screenshot 2024-05-10 at 2.56.37โ€ฏpm.png

Assess the stress controllability of neurons from their activity time series.

๐Ÿ“— Nature Neuroscience (2020).

https://www.nature.com/articles/s41593-020-0591-0Screenshot 2024-05-10 at 3.03.50โ€ฏpm.png

๐Ÿง  Neuroimaging

Here are some highlights:

Understand changes in fMRI brain dynamics in patients with epilepsy.

๐Ÿ“— Communications Biology (2024).

Screenshot 2024-05-10 at 4.57.19โ€ฏpm.pnghttps://www.nature.com/articles/s42003-024-05819-0

Extract EEG markers of cognitive decline.

๐Ÿ“— npj Aging (2024).

raoul5-3099459-large.gif (1).png

Detect EEG markers of seizure disorders.

๐Ÿ“— Brain Communications (2023).

Screenshot 2024-05-10 at 5.03.42โ€ฏpm.pnghttps://academic.oup.com/braincomms/article/5/6/fcad330/7456007?login=false

Capture a distinctive fingerprint of an individual's resting-state fMRI data.

๐Ÿ“™ ResearchSquare (2023).

Screenshot 2024-05-10 at 5.10.29โ€ฏpm.pnghttps://www.researchsquare.com/article/rs-3344208/v1

Identify methamphetamine users from EEG time series.

๐Ÿ“™ ResearchSquare (2023).

aaf69048deda0f2db74b0bf9.jpghttps://www.researchsquare.com/article/rs-3052453/v1

Compute temporal profile similarity for individual fingerprinting from human fMRI data.

๐Ÿ“— Network Neuroscience (2023).

netn_a_00320_f001.pnghttps://direct.mit.edu/netn/article/7/3/1206/115891/Functional-connectome-fingerprinting-across-the

Characterise subnetworks of the frontoparietal control network from fMRI recordings.

๐Ÿ“™ bioRxiv (2023).

Screenshot 2024-05-10 at 5.22.39โ€ฏpm.pnghttps://www.biorxiv.org/content/10.1101/2023.09.06.556465v1

Find time-series properties of motor-evoked potentials that predict multiple sclerosis progression after two years.

๐Ÿ“— BMC Neurology (2020).

12883_2020_1672_Fig7_HTML.png.webphttps://bmcneurol.biomedcentral.com/articles/10.1186/s12883-020-01672-w

Detect mild cognitive impairment using single-channel EEG to measure speech-evoked brain responses.

๐Ÿ“— IEEE Transactions on Neural Systems and Rehabilitation Engineering (2019).

Screenshot 2024-05-10 at 5.30.01โ€ฏpm.pnghttps://ieeexplore.ieee.org/abstract/document/8693868

In addition to:


๐Ÿ”ฌ Medicine**โ€”**General

Here are some highlights:

Differentiate tremor disorders using massive feature extraction, outperforming the best traditional tremor statistic.

๐Ÿ“™ MedRxiv (2024).

Screenshot 2024-05-11 at 6.13.35โ€ฏam.pnghttps://www.medrxiv.org/content/10.1101/2024.03.14.24303988v1

Identify physiological features predictive of respiratory outcomes in extremely pre-term infants from bedside monitor data.

๐Ÿ“™ MedRxiv (2024)

Screenshot 2024-05-11 at 5.38.04โ€ฏam.pnghttps://www.medrxiv.org/content/10.1101/2024.01.24.24301724v1

Discover signatures of fatal neonatal illness from vital signs.

๐Ÿ“— npj Digital Medicine (2022).

Screenshot 2024-05-11 at 6.19.09โ€ฏam.pnghttps://www.nature.com/articles/s41746-021-00551-z

Detect falls in elderly people from accelerometer data.

๐Ÿ“— IEEE International Conference on Information and Communication Technology for Sustainable Development (2021).

Screenshot 2024-05-11 at 5.52.46โ€ฏam.pnghttps://www.researchgate.net/publication/350835794_Social_Group_Optimized_Machine-Learning_Based_Elderly_Fall_detection_Approach_Using_Interdisciplinary_Time-Series_Features

Prediction of post-cardiac arrest outcomes at discharge from physiological time series recorded on the first day of intensive care.

๐Ÿ“— Anaesthesia Critical Care & Pain Medicine (2021).

Screenshot 2024-05-11 at 5.55.26โ€ฏam.pnghttps://www.sciencedirect.com/science/article/pii/S2352556821002228?via%3Dihub

Detect falls of elderly people using wearable sensors.

๐Ÿ“— IEEE Access (2021).

Screenshot 2024-05-11 at 6.00.45โ€ฏam.pnghttps://ieeexplore.ieee.org/document/9344695

Demonstrate that the suppression of essential tremor is due to a disruption of oscillations in the olivocerebellar loop.

๐Ÿ“— Nature Comms. (2021).

Screenshot 2024-05-11 at 6.03.04โ€ฏam.pnghttps://www.nature.com/articles/s41467-020-20581-7

Classify heartbeats measured using single-lead ECG.

๐Ÿ“— IEEE 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (2019).

Screenshot 2024-05-11 at 6.05.55โ€ฏam.pnghttps://ieeexplore.ieee.org/abstract/document/8757135

Assess muscles for clinical rehabilitation.

๐Ÿ“— 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2017).

Screenshot 2024-05-11 at 6.09.07โ€ฏam.pnghttps://ieeexplore.ieee.org/abstract/document/8037372/

in addition to:


๐Ÿฆ  Medicineโ€”Pathology

Screen for COVID-19 using digital holographic microscopy.

๐Ÿ“— Biomedical Optics Express (2022).

getimagev2.cfm.jpeg.pnghttps://opg.optica.org/boe/abstract.cfm?uri=boe-13-10-5377

Detect COVID-19 from red blood cells using digital holographic microscopy.

๐Ÿ“— Optics Express (2022).

getimagev2.cfm-4.jpeghttps://opg.optica.org/oe/fulltext.cfm?uri=oe-30-2-1723&id=467318

Identify the biogeographic heterogeneity of mucus, lumen, and feces.

๐Ÿ“— PNAS (2021).

Screenshot 2024-05-10 at 3.56.32โ€ฏpm.pnghttps://www.pnas.org/doi/full/10.1073/pnas.2019336118

๐Ÿ— Engineering

Here are some highlights:

Detect keyhole porosity formation during laser irradiation of Ti-6Al-4V substrates.

๐Ÿ“— Additive Manufacturing (2023).

1-s2.0-S2214860423004232-gr3_lrg.jpghttps://www.sciencedirect.com/science/article/pii/S2214860423004232?via%3Dihub

Identify keyhole pores in a laser powder-bed fusion process using acoustic and inline pyrometry time series.

๐Ÿ“— Journal of Materials Processing Technology (2022).

Screenshot 2024-05-10 at 4.28.01โ€ฏpm.pnghttps://www.sciencedirect.com/science/article/pii/S0924013622001686?via%3Dihub

Detect false data injection attacks into smart meters.

๐Ÿ“— IEEE Access (2021).

Screenshot 2024-05-10 at 4.53.06โ€ฏpm.pnghttps://www.researchgate.net/publication/355700005_Big_Data-Driven_Detection_of_False_Data_Injection_Attacks_in_Smart_Meters

Predict pending loss of power stability from generator response signals.

๐Ÿ“— IEEE Access (2021).

raoul5-3099459-large.gif.pnghttps://ieeexplore.ieee.org/document/9494352/

Detect seeded bearing faults on a wind turbine subjected to non-stationary wind speed.

๐Ÿ“— Proceedings of the Seventeenth International Conference on Condition Monitoring and Asset Management (2021).

Screenshot 2024-05-10 at 4.37.17โ€ฏpm.pnghttps://ris.uni-paderborn.de/record/22507

Recognise hand gestures.

๐Ÿ“— PLoS ONE (2020).

pone.0227039.g005.PNG_L.pnghttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227039

Distinguish energy use behaviours from smart meter data.

๐Ÿ“— Energy and Buildings (2019).

1-s2.0-S0378778819311260-gr5.jpghttps://doi.org/10.1016/j.enbuild.2019.07.019

Non-intrusively monitor load for appliance detection and electrical power saving in buildings.

๐Ÿ“— Energy and Buildings (2019).

1-s2.0-S0378778819305614-gr6.jpghttps://www.sciencedirect.com/science/article/pii/S0378778819305614?via%3Dihub

Evaluate asphalt irregularity from smartphone sensors.

๐Ÿ“— International Symposium on Intelligent Data Analysis (2018).

453857_1_En_27_Fig3_HTML.gif.webphttps://link.springer.com/chapter/10.1007/978-3-319-68765-0_27

in addition to:


โ›ฐ๏ธ Geoscience

Detecting earthquakes from seismic recordings.

๐Ÿ“— Geophysical Prospecting (2023).

gpr13386-fig-0001-m.jpghttps://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13386

Find temporal patterns for reconstructing surface soil moisture time series.

๐Ÿ“— Journal of Hydrology (2023).

1-s2.0-S0022169423005218-gr13 (1).jpghttps://www.sciencedirect.com/science/article/pii/S0022169423005218?via%3Dihub

Predict earthquakes (in the following month) from seismic indicators in Bangladesh.

๐Ÿ“— IEEE Access (2021).

ander11-3071400-large.gifhttps://ieeexplore.ieee.org/document/9395582

Detect earthquakes in Groningen, The Netherlands.

๐Ÿ“— 82nd EAGE Annual Conference & Exhibition Workshop Programme (2020).

Screenshot 2024-05-10 at 4.08.43โ€ฏpm.pnghttps://www.earthdoc.org/content/papers/10.3997/2214-4609.202011128