Skip to content

Perceptual hashing tools for detecting child sexual abuse material

License

Notifications You must be signed in to change notification settings

beaugunderson/perception

 
 

Repository files navigation

perception ci

perception provides flexible, well-documented, and comprehensively tested tooling for perceptual hashing research, development, and production use. See the documentation for details.

Background

perception was initially developed at Thorn as part of our work to eliminate child sexual abuse material from the internet. For more information on the issue, check out our CEO's TED talk.

Getting Started

Installation

pip install opencv-python perception

Hashing

Hashing with different functions is simple with perception.

from perception import hashers

file1, file2 = 'test1.jpg', 'test2.jpg'
hasher = hashers.PHash()
hash1, hash2 = hasher.compute(file1), hasher.compute(file2)
distance = hasher.compute_distance(hash1, hash2)

Examples

See below for end-to-end examples for common use cases for perceptual hashes.

Supported Hashing Algorithms

perception currently ships with:

  • pHash (DCT hash) (perception.hashers.PHash)
  • Facebook's PDQ Hash (perception.hashers.PDQ)
  • dHash (difference hash) (perception.hashers.DHash)
  • aHash (average hash) (perception.hashers.AverageHash)
  • Marr-Hildreth (perception.hashers.MarrHildreth)
  • Color Moment (perception.hashers.ColorMoment)
  • Block Mean (perception.hashers.BlockMean)
  • wHash (wavelet hash) (perception.hashers.WaveletHash)

Contributing

To work on the project, start by doing the following.

# Install local dependencies for
# code completion, etc.
make init

# Build the Docker container to run
# tests and such.
make build
  • Running make init will update this repository's dependencies and preserve the results in Pipfile.lock. We strongly recommend including changes to the lock alongside any other changes that may have been made.
  • You can get a JupyterLab server running to experiment with using make lab-server.
  • To do a (close to) comprehensive check before committing code, you can use make precommit.
  • To view the documentation, use make documentation-server.

To implement new features, please first file an issue proposing your change for discussion.

To report problems, please file an issue with sample code, expected results, actual results, and a complete traceback.

Alternatives

There are other packages worth checking out to see if they meet your needs for perceptual hashing. Here are some examples.

About

Perceptual hashing tools for detecting child sexual abuse material

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 93.9%
  • Cython 4.9%
  • Other 1.2%