๋ ผ๋ฌธ๊ณผ ์ฑ , ์น์ฌ์ดํธ ๋ฑ์ ํตํด ๊ณต๋ถํ๊ณ ์ฐ๊ตฌํ ๊ฒ๋ค์ ์์นด์ด๋ธํฉ๋๋ค.
๊ทธ๋ฆฌ๊ณ , ๊ทธ ์ธ Data Science๋ฅผ ํ ๋ ์์๋๋ฉด ์ข๋ค๊ณ ์๊ฐ๋๋ ๊ฒ๋ค๋ ์์นด์ด๋ธํฉ๋๋ค.
์ฐธ๊ณ ๋ฌธํ๊ณผ ์คํฐ๋ ๋ ธํธ, ๊ทธ๋ฆฌ๊ณ ๊ฐ๋ฅํ๋ค๋ฉด ์ฌํ๊ฐ๋ฅํ ์ฝ๋ ๋๋ ์ฌํ๊ฐ๋ฅํ ๊ฐ๋ตํ ํํ ๋ฆฌ์ผ์ ํจ๊ป ์ ๊ณตํ๊ณ ์ ํฉ๋๋ค.
๊ณต๋ถํ๊ณ ์ฐ๊ตฌํ๋ ํฐ ์ฃผ์ ๋ค์ ๋๋ค:
- Time Series
- Machine Learning and Statistical Learning
- Deep Learning
- High-Dimensional Data Analysis
- Statistics
- Miscellaneous
- ๋์ข ํ. R ์์ฉ ์๊ณ์ด๋ถ์. ์์ ์์นด๋ฐ๋ฏธ. 2020.
- ์ฌ๋ฌ ์๊ณ์ด๋ก ํ๊ท๋ฅผ ์ํํ ๋, ๊ผญ ์ฃผ์ํด์ผ ํ ์์๋์ด์ผํ ์ฌํญ
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ R ํํ ๋ฆฌ์ผ: CCF ๋ถ์์ ํ๊ตฌ์ ์๊ด ํ์ธ ๊ณผ์ ์ฐธ๊ณ
- ๋์ข ํ. R ์์ฉ ์๊ณ์ด๋ถ์. ์์ ์์นด๋ฐ๋ฏธ. 2020.
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ R ํํ ๋ฆฌ์ผ
- ๋์ข ํ. R ์์ฉ ์๊ณ์ด๋ถ์. ์์ ์์นด๋ฐ๋ฏธ. 2020.
- ๐ ์คํฐ๋ ๋ ธํธ
- Gasparrini, Antonio, Benedict Armstrong, and M.G. Kenward. โDistributed Lag Non-Linear Models.โ Statistics in Medicine 29 (September 20, 2010): 2224โ34. https://doi.org/10.1002/sim.3940.
- Gasparrini, Antonio. โDistributed Lag Linear and Non-Linear Models in R: The Package Dlnm.โ Journal of Statistical Software 43 (July 1, 2011): 1โ20. https://doi.org/10.18637/jss.v043.i08.
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ PPT
- ๐ R ํํ ๋ฆฌ์ผ
- ๋์ข ํ. R ์์ฉ ์๊ณ์ด๋ถ์. ์์ ์์นด๋ฐ๋ฏธ. 2020.
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ R ํํ ๋ฆฌ์ผ: tidyverse principle๋ก ์๊ณ์ด ์๋ฃ๋ถ์ํ๊ธฐ
- ๋์ข ํ. R ์์ฉ ์๊ณ์ด๋ถ์. ์์ ์์นด๋ฐ๋ฏธ. 2020.
- ๐ ์คํฐ๋ ๋ ธํธ
- Taylor, Sean, and Benjamin Letham. Forecasting at Scale, 2017. https://doi.org/10.7287/peerj.preprints.3190v2.
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ R ํํ ๋ฆฌ์ผ
- Athanasopoulos, George, Roman A. Ahmed, and Rob J. Hyndman. โHierarchical Forecasts for Australian Domestic Tourism.โ International Journal of Forecasting 25, no. 1 (January 1, 2009): 146โ66. https://doi.org/10.1016/j.ijforecast.2008.07.004.
- Athanasopoulos, George, Rob Hyndman, Roman Ahmed, and Han Lin Shang. โOptimal Combination Forecasts for Hierarchical.โ Computational Statistics & Data Analysis 55 (September 1, 2011): 2579โ89. https://doi.org/10.1016/j.csda.2011.03.006.
- Hyndman, Rob J, George Athanasopoulos, and Han Lin Shang. โHts: An R Package for Forecasting Hierarchical or Grouped Time Series,โ n.d., 12.
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ R ํํ ๋ฆฌ์ผ
- Slides. โIntervention Analysis.โ Accessed April 17, 2022. https://slides.com/tonyg/intervention-analysis.
- ๐ ์ฐธ๊ณ ์๋ฃ
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ R ์ฝ๋
- ๐ R ์ฝ๋: arimax() ํํ ๋ฆฌ์ผ
- Berndt, Donald J., and James Clifford. โUsing Dynamic Time Warping to Find Patterns in Time Series.โ In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, 359โ70. AAAIWSโ94. Seattle, WA: AAAI Press, 1994.
- ์ ํ ๋๋ ํํํ๋ ์๊ณ์ด, ์์ฐจ๊ฐ ์กด์ฌํ๋ ์ ์ฌํ ํจํด์ด ์กด์ฌํ๋ ๋ ์๊ณ์ด์ ์ก์๋ผ ์ ์๊ฒ๋ ํด์ฃผ๋ ๋น์ ์ฌ์ฑ ์ธก๋(๊ฑฐ๋ฆฌ ์ธก๋) ์๊ณ ๋ฆฌ์ฆ
- DTW distance๋ฅผ ์ด์ฉํด ๊ณ์ธต์ ๊ตฐ์ง ๋ถ์ ์ํ ๊ฐ๋ฅ
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ R ํํ ๋ฆฌ์ผ
- Graps, Amara. โAn Introduction to Wavelets.โ IEEE Comp. Sci. Engi. 2 (February 1, 1995): 50โ61. https://doi.org/10.1109/99.388960.
- Li, Daoyuan, Tegawendรฉ F. Bissyandรฉ, Jacques Klein, and Y. L. Traon. โTime Series Classification with Discrete Wavelet Transformed Data: Insights from an Empirical Study.โ In SEKE, 2016. https://doi.org/10.18293/SEKE2016-067.
- ์๊ณ์ด๋ค์ ๋ฐ์ดํฐ์ ์ด๋ก ๋์ดํ์ฌ classification์ ์ํํ ๋, ํจ๊ณผ์ ์ธ ์ฐจ์ ๊ฐ์ ๋ฐฉ๋ฒ
- ์ผ์ข ์ ์๊ณ์ด Feature engineering ๊ธฐ๋ฒ์ ํด๋น
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ R ํํ ๋ฆฌ์ผ
- Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 1 ๋จธ์ ๋ฌ๋ ์ฉ์ด ์ ๋ฆฌ
- Chen, Tianqi, and Carlos Guestrin. โXGBoost: A Scalable Tree Boosting System.โ Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 13, 2016, 785โ94. https://doi.org/10.1145/2939672.2939785.
- Chen, Lilly. โBasic Ensemble Learning (Random Forest, AdaBoost, Gradient Boosting)- Step by Step Explained.โ Medium, January 2, 2019. https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725.
- Morde, Vishal. โXGBoost Algorithm: Long May She Reign!โ Medium, April 8, 2019. https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-algorithm-long-she-may-rein-edd9f99be63d.
- โLight GBM vs XGBOOST: Which Algorithm Takes the Crown.โ Accessed April 17, 2022. https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-light-gbm-vs-xgboost/.
- Random Forest, AdaBoost, Gradient Boosting, XGBoost, Light GBM
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ R ํํ ๋ฆฌ์ผ: tidyverse principle๋ก ๋จธ์ ๋ฌ๋ํ๊ธฐ
- James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. โAn Introduction to Statistical Learning.โ An Introduction to Statistical Learning. Accessed April 17, 2022. https://www.statlearning.com.
- Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference and Prediction. 2nd ed. Springer, 2009. http://www-stat.stanford.edu/~tibs/ElemStatLearn/.
- StatQuest with Josh Starmer. Logistic Regression Details Pt 2: Maximum Likelihood, 2018. https://www.youtube.com/watch?v=BfKanl1aSG0.
- Chatterjee, Samprit, and Ali S. Hadi. โRegression Analysis by Example, Fifth Edition.โ
- ๐ ์คํฐ๋ ๋ ธํธ
- Hayes, Genevieve. โBeyond Linear Regression: An Introduction to GLMs.โ Medium, December 24, 2019. https://towardsdatascience.com/beyond-linear-regression-an-introduction-to-glms-7ae64a8fad9c.
- James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. โAn Introduction to Statistical Learning.โ An Introduction to Statistical Learning. Accessed April 17, 2022. https://www.statlearning.com.
- GLM
- ๐ ์คํฐ๋ ๋ ธํธ
- GAM
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 1 ์ ํ๋ชจํ์ ํ๊ณ
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 2 ๋คํญ ํ๊ท์ ๊ณ๋จ ํจ์
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 3 Regression splines
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 4 Smoothing splines
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 5 Local regressions
- ๐ ์คํฐ๋ ๋ ธํธ: GAMs
- Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 1 ๋ฅ๋ฌ๋์ ๋ชจํฐ๋ฒ ์ด์ ๊ณผ ์ญ์ฌ
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 2 ์ ํ๋์์ ์ฌ๋ฌ ๊ฐ์ฒด ์๊ฐ
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 3 ํ๋ ฌ์ ์ ์น์ ๋ธ๋ก๋์บ์คํ
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 4 ํ๋ ฌ๊ณผ ๋ฒกํฐ์ ๊ณฑ์ฐ์ฐ
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 5 ์ ํ๋ฐฉ์ ์๊ณผ ์ ํ์ข ์,span
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 6 norms
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 7 ํน๋ณํ ์ข ๋ฅ์ ํ๋ ฌ๊ณผ ๋ฒกํฐ
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 8 ๊ณ ์ณ๊ฐ ๋ถํด
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 9 ํน์๊ฐ ๋ถํด์ ์ผ๋ฐํ ์ญํ๋ ฌ
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 10 Trace ์ฐ์ฐ์์ ํ๋ ฌ์
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 11 ์ ํ๋์๋ฅผ ์ด์ฉํ ์ฃผ์ฑ๋ถ ์ ๋
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 12 ๋จธ์ ๋ฌ๋ ์ฉ์ด ์ ๋ฆฌ
- Breheny, Patrick. High-Dimensional Data Analysis. The University of Iowa, 2016. https://myweb.uiowa.edu/pbreheny/7600/s16/index.html.
- R ์์ค์ฝ๋ ๋ฐ ์์ Dataset ์ ๊ณต
- ์ผ๋ฐ์ ์ธ ๊ธฐ๊ณํ์ต ๊ธฐ๋ฐ์ ์์ธก ๋ชจ๋ธ๋ง์ผ๋ก ์ ๊ทผํ๊ธฐ ์ด๋ ค์ด n -> p ๋๋ n < p ์ธ ์๋ฃ์ ์์ธก ๋ชจ๋ธ๋ง์ ๊ดํ ๋ฐฉ๋ฒ๋ก (์ฌ๊ธฐ์ n์ ๊ด์ธก์น์ ์, p๋ ์์ธก๋ณ์์ ์)
- ๊ผญ ๊ณ ์ฐจ์ ์๋ฃ๊ฐ ์๋, ํ๊ท๋ชจํ์ ์์ธก ์ฑ๋ฅ์ ๋์ด๊ธฐ ์ํด์๋ ์ฌ์ฉ๋๋ ๋ฐฉ๋ฒ๋ก ๋ค์ ํด๋น
- ํต๊ณ์ ๊ฐ์ค๊ฒ์ ๊ด์ ์์ ๊ฐ์ค ๊ฒ์ ์ ๋ฐ์ํ๋ ๊ณ ์ฐจ์ ๋ฌธ์ ์ ๊ดํ ์๋ฃจ์ ๋ํ ์ ๊ณตํจ
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite ๊ณ ์ฐจ์ ์๋ฃ์ ๋ํ ๊ณ ์ ์ ์ธ ํ๊ท๋ถ์์ ๋ฌธ์ ์
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 1 ํต๊ณ์ ๊ฐ์ค๊ฒ์ ์ ์๋ฆฌ
- ๐ ์คํฐ๋ ๋ ธํธ: Prerequisite 2 ๋ค์ค ๊ฒ์
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ ์คํฐ๋ ๋ ธํธ
- ํต๊ณํ, ํต๊ณ์ ๊ฐ์ค๊ฒ์ ๊ณผ ๊ด๋ จํ ๊ฒ๋ค์ ์์นด์ด๋ธ ํฉ๋๋ค.
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ ์คํฐ๋ ๋ ธํธ
- ๐ ์คํฐ๋ ๋ ธํธ