-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_backdoor.py
161 lines (136 loc) · 6.68 KB
/
train_backdoor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import time
import argparse
import logging
import numpy as np
import torch
import torch.nn as nn
import pandas as pd
from collections import OrderedDict
import models
from data.poison_tool_cifar import get_backdoor_loader, get_test_loader, get_train_loader
if torch.cuda.is_available():
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
device = torch.device('cuda')
else:
device = torch.device('cpu')
seed = 98
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(seed)
np.random.seed(seed)
def train_step(args, model, criterion, optimizer, data_loader):
model.train()
total_correct = 0
total_loss = 0.0
for i, (images, labels) in enumerate(data_loader):
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels)
pred = output.data.max(1)[1]
total_correct += pred.eq(labels.view_as(pred)).sum()
total_loss += loss.item()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2)
loss.backward()
optimizer.step()
loss = total_loss / len(data_loader)
acc = float(total_correct) / len(data_loader.dataset)
return loss, acc
def test(model, criterion, data_loader):
model.eval()
total_correct = 0
total_loss = 0.0
with torch.no_grad():
for i, (images, labels) in enumerate(data_loader):
images, labels = images.to(device), labels.to(device)
output = model(images)
total_loss += criterion(output, labels).item()
pred = output.data.max(1)[1]
total_correct += pred.eq(labels.data.view_as(pred)).sum()
loss = total_loss / len(data_loader)
acc = float(total_correct) / len(data_loader.dataset)
return loss, acc
def save_checkpoint(state, file_path):
# filepath = os.path.join(args.output_dir, args.arch + '-unlearning_epochs{}.tar'.format(epoch))
torch.save(state, file_path)
def main(args):
logger = logging.getLogger(__name__)
logging.basicConfig(
format='[%(asctime)s] - %(message)s',
datefmt='%Y/%m/%d %H:%M:%S',
level=logging.DEBUG,
handlers=[
logging.FileHandler(os.path.join(args.log_root, 'output.log')),
logging.StreamHandler()
])
logger.info(args)
logger.info('----------- Backdoored Data Initialization --------------')
_, backdoor_data_loader = get_backdoor_loader(args)
clean_test_loader, bad_test_loader = get_test_loader(args)
logger.info('----------- Backdoor Model Initialization --------------')
net = getattr(models, args.arch)(num_classes=10, norm_layer=None)
net = net.to(device)
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.schedule, gamma=0.1)
logger.info('----------- Backdoor Model Training--------------')
logger.info('Epoch \t lr \t Time \t TrainLoss \t TrainACC \t PoisonLoss \t PoisonACC \t CleanLoss \t CleanACC')
for epoch in range(0, args.epochs + 1):
start = time.time()
lr = optimizer.param_groups[0]['lr']
train_loss, train_acc = train_step(args=args, model=net, criterion=criterion, optimizer=optimizer,
data_loader=backdoor_data_loader)
cl_test_loss, cl_test_acc = test(model=net, criterion=criterion, data_loader=clean_test_loader)
po_test_loss, po_test_acc = test(model=net, criterion=criterion, data_loader=bad_test_loader)
scheduler.step()
end = time.time()
logger.info(
'%d \t %.3f \t %.1f \t %.4f \t %.4f \t %.4f \t %.4f \t %.4f \t %.4f',
epoch, lr, end - start, train_loss, train_acc, po_test_loss, po_test_acc,
cl_test_loss, cl_test_acc)
if epoch % args.interval == 0:
# save the last checkpoint
file_path = os.path.join(args.output_weight, f'backdoor_model.tar')
save_checkpoint({
'epoch': epoch,
'state_dict': net.state_dict(),
'clean_acc': cl_test_acc,
'bad_acc': po_test_acc,
'optimizer': optimizer.state_dict(),
}, file_path)
if __name__ == '__main__':
# Prepare arguments
parser = argparse.ArgumentParser()
# various path
parser.add_argument('--cuda', type=int, default=1, help='cuda available')
parser.add_argument('--save-every', type=int, default=5, help='save checkpoints every few epochs')
parser.add_argument('--log_root', type=str, default='logs/', help='logs are saved here')
parser.add_argument('--output_weight', type=str, default='weights/')
parser.add_argument('--arch', type=str, default='resnet18',
choices=['resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'MobileNetV2',
'vgg19_bn'])
parser.add_argument('--schedule', type=int, nargs='+', default=[10, 20],
help='Decrease learning rate at these epochs.')
parser.add_argument('--dataset', type=str, default='CIFAR10', help='name of image dataset')
parser.add_argument('--batch_size', type=int, default=128, help='The size of batch')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='weight decay')
parser.add_argument('--num_class', type=int, default=10, help='number of classes')
parser.add_argument('--lr', type=int, default=0.1, help='the number of epochs for unlearning')
parser.add_argument('--epochs', type=int, default=60, help='the number of epochs for training')
parser.add_argument('--interval', type=int, default=10, help='the interval of saving weight')
# backdoor attacks
parser.add_argument('--target_label', type=int, default=0, help='class of target label')
parser.add_argument('--trigger_type', type=str, default='gridTrigger', help='type of backdoor trigger')
parser.add_argument('--target_type', type=str, default='all2one', help='type of backdoor label')
parser.add_argument('--trig_w', type=int, default=3, help='width of trigger pattern')
parser.add_argument('--trig_h', type=int, default=3, help='height of trigger pattern')
parser.add_argument('--inject_portion', type=float, default=0.1, help='ratio of backdoor poisoned data')
args = parser.parse_args()
args_dict = vars(args)
print(args_dict)
os.makedirs(args.log_root, exist_ok=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
main(args)