-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathphiseg_makegif_samples.py
198 lines (139 loc) · 6.96 KB
/
phiseg_makegif_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import glob
import logging
import os
from importlib.machinery import SourceFileLoader
import cv2
import numpy as np
import config.system as sys_config
import utils
from data.data_switch import data_switch
from phiseg.phiseg_model import phiseg
# import scipy.misc
from PIL import Image
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
return np.exp(x) / np.sum(np.exp(x), axis=-1, keepdims=True)
SAVE_VIDEO = False
SAVE_GIF = True
DISPLAY_VIDEO = True
video_target_size = (256, 256)
def histogram_equalization(img):
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
# -----Splitting the LAB image to different channels-------------------------
l, a, b = cv2.split(lab)
# -----Applying CLAHE to L-channel-------------------------------------------
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
cl = clahe.apply(l)
# -----Merge the CLAHE enhanced L-channel with the a and b channel-----------
limg = cv2.merge((cl, a, b))
# -----Converting image from LAB Color model to RGB model--------------------
final = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)
return final
def main(model_path, exp_config):
# Make and restore vagan model
phiseg_model = phiseg(exp_config=exp_config)
phiseg_model.load_weights(model_path, type='best_ged')
data_loader = data_switch(exp_config.data_identifier)
data = data_loader(exp_config)
lat_lvls = exp_config.latent_levels
# RANDOM IMAGE
# x_b, s_b = data.test.next_batch(1)
# FIXED IMAGE
# Cardiac: 100 normal image
# LIDC: 200 large lesion, 203, 1757 complicated lesion
# Prostate: 165 nice slice, 170 is a challenging and interesting slice
index = 165 # #
if SAVE_GIF:
outfolder_gif = os.path.join(model_path, 'model_samples_id%d_gif' % index)
utils.makefolder(outfolder_gif)
x_b = data.test.images[index,...].reshape([1]+list(exp_config.image_size))
x_b_d = utils.convert_to_uint8(np.squeeze(x_b))
x_b_d = utils.resize_image(x_b_d, video_target_size)
if exp_config.data_identifier == 'uzh_prostate':
# rotate
rows, cols = x_b_d.shape
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), 270, 1)
x_b_d = cv2.warpAffine(x_b_d, M, (cols, rows))
if SAVE_VIDEO:
fourcc = cv2.VideoWriter_fourcc(*'XVID')
outfile = os.path.join(model_path, 'model_samples_id%d.avi' % index)
out = cv2.VideoWriter(outfile, fourcc, 5.0, (2*video_target_size[1], video_target_size[0]))
samps = 20
for ii in range(samps):
# fix all below current level (the correct implementation)
feed_dict = {}
feed_dict[phiseg_model.training_pl] = False
feed_dict[phiseg_model.x_inp] = x_b
s_p, s_p_list = phiseg_model.sess.run([phiseg_model.s_out_eval, phiseg_model.s_out_eval_list], feed_dict=feed_dict)
s_p = np.argmax(s_p, axis=-1)
# s_p_d = utils.convert_to_uint8(np.squeeze(s_p))
s_p_d = np.squeeze(np.uint8((s_p / exp_config.nlabels)*255))
s_p_d = utils.resize_image(s_p_d, video_target_size, interp=cv2.INTER_NEAREST)
if exp_config.data_identifier == 'uzh_prostate':
#rotate
s_p_d = cv2.warpAffine(s_p_d, M, (cols, rows))
img = np.concatenate([x_b_d, s_p_d], axis=1)
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img = histogram_equalization(img)
if exp_config.data_identifier == 'acdc':
# labels (0 85 170 255)
rv = cv2.inRange(s_p_d, 84, 86)
my = cv2.inRange(s_p_d, 169, 171)
rv_cnt, hierarchy = cv2.findContours(rv, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
my_cnt, hierarchy = cv2.findContours(my, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img, rv_cnt, -1, (0, 255, 0), 1)
cv2.drawContours(img, my_cnt, -1, (0, 0, 255), 1)
if exp_config.data_identifier == 'uzh_prostate':
print(np.unique(s_p_d))
s1 = cv2.inRange(s_p_d, 84, 86)
s2 = cv2.inRange(s_p_d, 169, 171)
# s3 = cv2.inRange(s_p_d, 190, 192)
s1_cnt, hierarchy = cv2.findContours(s1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
s2_cnt, hierarchy = cv2.findContours(s2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# s3_cnt, hierarchy = cv2.findContours(s3, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img, s1_cnt, -1, (0, 255, 0), 1)
cv2.drawContours(img, s2_cnt, -1, (0, 0, 255), 1)
# cv2.drawContours(img, s3_cnt, -1, (255, 0, 255), 1)
elif exp_config.data_identifier == 'lidc':
thresh = cv2.inRange(s_p_d, 127, 255)
lesion, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img, lesion, -1, (0, 255, 0), 1)
if SAVE_VIDEO:
out.write(img)
if SAVE_GIF:
outfile_gif = os.path.join(outfolder_gif, 'frame_%s.png' % str(ii).zfill(3))
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# scipy.misc.imsave(outfile_gif, img_rgb)
im = Image.fromarray(img_rgb)
im = im.resize((im.size[0]*2, im.size[1]*2), Image.ANTIALIAS)
im.save(outfile_gif)
if DISPLAY_VIDEO:
cv2.imshow('frame', img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if SAVE_VIDEO:
out.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
base_path = sys_config.project_root
# Code for selecting experiment from command line
# parser = argparse.ArgumentParser(
# description="Script for a simple test loop evaluating a network on the test dataset")
# parser.add_argument("EXP_PATH", type=str, help="Path to experiment folder (assuming you are in the working directory)")
# args = parser.parse_args()
# exp_path = args.EXP_PATH
# exp_path = '/itet-stor/baumgach/net_scratch/logs/segvae/lidc/segvae_7_5'
# exp_path = '/itet-stor/baumgach/net_scratch/logs/segvae/lidc/probunet'
#
# exp_path = '/itet-stor/baumgach/net_scratch/logs/segvae/uzh_prostate_afterpaper/segvae_7_5_1annot'
# exp_path = '/itet-stor/baumgach/net_scratch/logs/segvae/uzh_prostate_afterpaper/segvae_7_5'
# exp_path = '/itet-stor/baumgach/net_scratch/logs/segvae/uzh_prostate_afterpaper/probUNET_1annotator_2'
exp_path = '/itet-stor/baumgach/net_scratch/logs/segvae/uzh_prostate_afterpaper/segvae_7_5_batchnorm_rerun'
# exp_path = '/itet-stor/baumgach/net_scratch/logs/segvae/uzh_prostate_afterpaper/segvae_7_5_batchnorm_schedule'
# exp_path = '/itet-stor/baumgach/net_scratch/logs/segvae/uzh_prostate_afterpaper/probUNET'
model_path = exp_path
config_file = glob.glob(model_path + '/*py')[0]
config_module = config_file.split('/')[-1].rstrip('.py')
exp_config = SourceFileLoader(config_module, os.path.join(config_file)).load_module()
main(model_path, exp_config=exp_config)