-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Update and rename 2023-05-19-labelseg.md to 2023-12-28-labelseg.md
- Loading branch information
Showing
2 changed files
with
32 additions
and
22 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
--- | ||
title: "labelSeg: segment annotation for tumor copy number alteration profiles" | ||
description: A tool to assign relative SCNA levels to segments | ||
template: post.html | ||
authors: | ||
- '@hangjiaz' | ||
- '@mbaudis' | ||
|
||
date: 2023-12-28 | ||
pdf_file_name: 2023-12-28___Zhao-and-Baudis__labelSeg-segment-annotation-for-tumor-copy-number-alteration-profiles__Briefings-in-Bioinformatics.pdf | ||
links: | ||
- '[article at Briefings in Bioinformatics](https://academic.oup.com/bib/article/25/2/bbad541/7595616)' | ||
- '[preprint at bioRxiv](https://www.biorxiv.org/content/10.1101/2023.05.17.541097v2)' | ||
|
||
--- | ||
|
||
#### Hangjia Zhao and Michael Baudis | ||
##### Briefings in Bioinformatics (Oxford). 2024 Jan 31;2024:bbad541. | ||
* doi: 10.1093/bib/bbad541 | ||
* PMID: 38300514 | ||
* bioRxiv. doi: https://doi.org/10.1101/2023.05.17.541097 | ||
|
||
|
||
**Abstract** Somatic copy number alterations (SCNAs) are a predominant type of oncogenomic alterations that affect a large proportion of the genome in the majority of cancer samples. Current technologies allow high-throughput measurement of such copy number aberrations, generating results consisting of frequently large sets of SCNA segments. However, the automated annotation and integration of such data are particularly challenging because the measured signals reflect biased, relative copy number ratios. In this study, we introduce labelSeg, an algorithm designed for rapid and accurate annotation of CNA segments, with the aim of enhancing the interpretation of tumor SCNA profiles. <!--more--> Leveraging density-based clustering and exploiting the length–amplitude relationships of SCNA, our algorithm proficiently identifies distinct relative copy number states from individual segment profiles. Its compatibility with most CNA measurement platforms makes it suitable for large-scale integrative data analysis. We confirmed its performance on both simulated and sample-derived data from The Cancer Genome Atlas reference dataset, and we demonstrated its utility in integrating heterogeneous segment profiles from different data sources and measurement platforms. Our comparative and integrative analysis revealed common SCNA patterns in cancer and protein-coding genes with a strong correlation between SCNA and messenger RNA expression, promoting the investigation into the role of SCNA in cancer development. | ||
|
||
Package: https://github.com/baudisgroup/labelSeg | ||
|
||
#### Notes | ||
|
||
The first version of the article had been posted at biorXiv on 2023-05-19. | ||
|
||
The second version of the article had been posted at biorXiv on 2023-09-02. |