-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·161 lines (105 loc) · 5.41 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
from torch.nn import Sequential, Linear, ReLU, Sigmoid, Tanh, Dropout, Upsample
import torch.nn.functional as F
import torch.nn as nn
from torch_geometric.nn import NNConv
from torch_geometric.nn import GCNConv
from torch_geometric.nn import BatchNorm
import numpy as np
from torch_geometric.data import Data
from torch.autograd import Variable
class Aligner(torch.nn.Module):
def __init__(self):
super(Aligner, self).__init__()
nn = Sequential(Linear(1, 1225), ReLU())
self.conv1 = NNConv(35, 35, nn, aggr='mean', root_weight=True, bias=True)
self.conv11 = BatchNorm(35, eps=1e-03, momentum=0.1, affine=True, track_running_stats=True)
nn = Sequential(Linear(1, 35), ReLU())
self.conv2 = NNConv(35, 1, nn, aggr='mean', root_weight=True, bias=True)
self.conv22 = BatchNorm(1, eps=1e-03, momentum=0.1, affine=True, track_running_stats=True)
nn = Sequential(Linear(1, 35), ReLU())
self.conv3 = NNConv(1, 35, nn, aggr='mean', root_weight=True, bias=True)
self.conv33 = BatchNorm(35, eps=1e-03, momentum=0.1, affine=True, track_running_stats=True)
def forward(self, data):
x, edge_index, edge_attr = data.x, data.pos_edge_index, data.edge_attr
x1 = F.sigmoid(self.conv11(self.conv1(x, edge_index, edge_attr)))
x1 = F.dropout(x1, training=self.training)
x2 = F.sigmoid(self.conv22(self.conv2(x1, edge_index, edge_attr)))
x2 = F.dropout(x2, training=self.training)
x3 = torch.cat([F.sigmoid(self.conv33(self.conv3(x2, edge_index, edge_attr))), x1], dim=1)
x4 = x3[:, 0:35]
x5 = x3[:, 35:70]
x6 = (x4 + x5) / 2
return x6
class Generator1(nn.Module):
def __init__(self):
super(Generator1, self).__init__()
nn = Sequential(Linear(1, 1225),ReLU())
self.conv1 = NNConv(35, 35, nn, aggr='mean', root_weight=True, bias=True)
self.conv11 = BatchNorm(35, eps=1e-03, momentum=0.1, affine=True, track_running_stats=True)
nn = Sequential(Linear(1, 5600), ReLU())
self.conv2 = NNConv(160, 35, nn, aggr='mean', root_weight=True, bias=True)
self.conv22 = BatchNorm(35, eps=1e-03, momentum=0.1, affine=True, track_running_stats=True)
nn = Sequential(Linear(1, 5600), ReLU())
self.conv3 = NNConv(35, 160, nn, aggr='mean', root_weight=True, bias=True)
self.conv33 = BatchNorm(160, eps=1e-03, momentum=0.1, affine=True, track_running_stats=True)
# self.layer= torch.nn.ConvTranspose2d(160, 160,5)
def forward(self, data):
x, edge_index, edge_attr = data.x, data.pos_edge_index, data.edge_attr
# x = torch.squeeze(x)
x1 = F.sigmoid(self.conv11(self.conv1(x, edge_index, edge_attr)))
x1 = F.dropout(x1, training=self.training)
# x2 = F.sigmoid(self.conv22(self.conv2(x1, edge_index, edge_attr)))
# x2 = F.dropout(x2, training=self.training)
x3 = F.sigmoid(self.conv33(self.conv3(x1, edge_index, edge_attr)))
x3 = F.dropout(x3, training=self.training)
x4 = torch.matmul(x3.t(), x3)
return x4
class Discriminator1(torch.nn.Module):
def __init__(self):
super(Discriminator1, self).__init__()
self.conv1 = GCNConv(160, 160, cached=True)
self.conv2 = GCNConv(160, 1, cached=True)
def forward(self, data):
x, edge_index, edge_attr = data.x, data.pos_edge_index, data.edge_attr
x = torch.squeeze(x)
x1 = F.sigmoid(self.conv1(x, edge_index))
x1 = F.dropout(x1, training=self.training)
x2 = F.sigmoid(self.conv2(x1, edge_index))
# # x2 = F.dropout(x2, training=self.training)
return x2
class Generator2(nn.Module):
def __init__(self):
super(Generator2, self).__init__()
self.conv21 = GCNConv(160, 2 * 268, cached=True)
self.conv211 = BatchNorm(2 * 268, eps=1e-03, momentum=0.1, affine=True, track_running_stats=True)
self.conv22 = GCNConv(2 * 268, 268, cached=True)
self.conv222 = BatchNorm(268, eps=1e-03, momentum=0.1, affine=True, track_running_stats=True)
self.conv23 = GCNConv(268, 268, cached=True)
def forward(self, data):
x, edge_index, edge_attr = data.x, data.pos_edge_index, data.edge_attr
x = torch.squeeze(x)
x = self.conv21(x, edge_index).relu()
x1 = F.sigmoid(self.conv211(x))
x1 = F.dropout(x1, training=self.training)
x2 = self.conv22(x1, edge_index).relu()
x2 = F.sigmoid(self.conv222(x2))
x2 = F.dropout(x2, training=self.training)
x3 = (torch.matmul(x2.t(), x2))
return x3
class Discriminator2(torch.nn.Module):
def __init__(self):
super(Discriminator2, self).__init__()
self.conv21 = GCNConv(268, 268, cached=True)
self.conv211 = BatchNorm(268, eps=1e-03, momentum=0.1, affine=True, track_running_stats=True)
self.conv22 = GCNConv(268, 1, cached=True)
self.conv222 = BatchNorm(1, eps=1e-03, momentum=0.1, affine=True, track_running_stats=True)
def forward(self, data):
x, edge_index, edge_attr = data.x, data.pos_edge_index, data.edge_attr
x = torch.squeeze(x)
x = self.conv21(x, edge_index).relu()
x = self.conv211(x)
x = F.relu(x)
x = F.dropout(x, training=self.training)
x1 = F.relu(self.conv222(self.conv22(x, edge_index)))
return F.sigmoid(x1)