-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_model.py
32 lines (25 loc) · 974 Bytes
/
run_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch
import torch.optim as optim
from model import MyNet
import time
import copy
from dataLoader import DataGetter
import matplotlib.pyplot as plt
import pickle
from train import train_model
if __name__ == "__main__":
model = MyNet()
optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()),lr=0.001)
# Data loader init
# data_dir = 'D:/data_odometry_gray/dataset'
data_dir = 'D:/data_odometry_color/dataset/'
batch_size = 16
trainData = DataGetter(data_dir, batch_size, 0, 6, randomize_data=True)
valData = DataGetter(data_dir, batch_size, 7, 7, randomize_data=True)
model, metrics = train_model(model, optimizer, trainData, valData, num_epochs=50)
# Save model and results
name = time.ctime(time.time()).replace(' ', '_').replace(':', '_')
with open(name + '.pkl', 'wb') as f:
pickle.dump(metrics, f)
model.eval()
torch.save(model.state_dict(), 'model_' + name + '.pkl')