diff --git a/arch/bootstrap/_samplers.pyx b/arch/bootstrap/_samplers.pyx index 8417d53380..414f8d2b17 100644 --- a/arch/bootstrap/_samplers.pyx +++ b/arch/bootstrap/_samplers.pyx @@ -2,8 +2,8 @@ #cython: language_level=3, boundscheck=False, wraparound=False, cdivision=True import numpy as np + cimport numpy as np -cimport cython def stationary_bootstrap_sample(np.int64_t[:] indices, double[:] u, diff --git a/arch/univariate/__init__.py b/arch/univariate/__init__.py index f867baa02e..ce2438cdd2 100644 --- a/arch/univariate/__init__.py +++ b/arch/univariate/__init__.py @@ -3,12 +3,12 @@ from arch.univariate.mean import HARX, ConstantMean, ZeroMean, ARX, arch_model, LS from arch.univariate.volatility import (GARCH, ARCH, HARCH, ConstantVariance, EWMAVariance, RiskMetrics2006, EGARCH, FixedVariance, MIDASHyperbolic, - FIGARCH) + FIGARCH, VarianceTargetingGARCH) from arch.univariate.distribution import (Distribution, Normal, StudentsT, SkewStudent, GeneralizedError) __all__ = ['HARX', 'ConstantMean', 'ZeroMean', 'ARX', 'arch_model', 'LS', 'GARCH', 'ARCH', 'HARCH', 'ConstantVariance', - 'EWMAVariance', 'RiskMetrics2006', 'EGARCH', + 'EWMAVariance', 'RiskMetrics2006', 'EGARCH', 'VarianceTargetingGARCH', 'Distribution', 'Normal', 'StudentsT', 'SkewStudent', 'GeneralizedError', 'FixedVariance', 'MIDASHyperbolic', 'FIGARCH'] diff --git a/arch/univariate/recursions.pyx b/arch/univariate/recursions.pyx index 11963bc615..9da40669ae 100644 --- a/arch/univariate/recursions.pyx +++ b/arch/univariate/recursions.pyx @@ -2,6 +2,7 @@ #cython: language_level=3, boundscheck=False, wraparound=False, cdivision=True import numpy as np + cimport numpy as np __all__ = ['harch_recursion', 'arch_recursion', 'garch_recursion', 'egarch_recursion', diff --git a/arch/univariate/volatility.py b/arch/univariate/volatility.py index 6117ecfb41..13e5a09f5b 100644 --- a/arch/univariate/volatility.py +++ b/arch/univariate/volatility.py @@ -948,8 +948,7 @@ def starting_values(self, resids): if q > 0: sv[1 + p + o:1 + p + o + q] = agb / q svs.append(sv) - llfs[i] = self._gaussian_loglikelihood(sv, resids, backcast, - var_bounds) + llfs[i] = self._gaussian_loglikelihood(sv, resids, backcast, var_bounds) loc = np.argmax(llfs) return svs[int(loc)] @@ -2702,3 +2701,163 @@ def _simulation_forecast(self, parameters, resids, backcast, var_bounds, start, forecasts[:start] = np.nan return VarianceForecast(forecasts, paths, shocks) + + +class VarianceTargetingGARCH(GARCH): + r""" + GARCH and related model estimation + + The following models can be specified using GARCH: + * ARCH(p) + * GARCH(p,q) + * GJR-GARCH(p,o,q) + * AVARCH(p) + * AVGARCH(p,q) + * TARCH(p,o,q) + * Models with arbitrary, pre-specified powers + + Parameters + ---------- + p : int + Order of the symmetric innovation + o : int + Order of the asymmetric innovation + q: int + Order of the lagged (transformed) conditional variance + + Attributes + ---------- + num_params : int + The number of parameters in the model + + Examples + -------- + >>> from arch.univariate import VarianceTargetingGARCH + + Standard GARCH(1,1) with targeting + + >>> vt = VarianceTargetingGARCH(p=1, q=1) + + Asymmetric GJR-GARCH process with targeting + + >>> vt = VarianceTargetingGARCH(p=1, o=1, q=1) + + Notes + ----- + In this class of processes, the variance dynamics are + + .. math:: + + \sigma_{t}^{\lambda}= + bar{\omega}(1-\sum_{i=1}^{p}\alpha_{i} + - \frac{1}{2}\sum_{j=1}^{o}\gamma_{j} + - \sum_{k=1}^{q}\beta_{k}) + + \sum_{i=1}^{p}\alpha_{i}\left|\epsilon_{t-i}\right|^{\lambda} + +\sum_{j=1}^{o}\gamma_{j}\left|\epsilon_{t-j}\right|^{\lambda} + I\left[\epsilon_{t-j}<0\right]+\sum_{k=1}^{q}\beta_{k}\sigma_{t-k}^{\lambda} + """ + + def __init__(self, p=1, o=0, q=1): + super(VarianceTargetingGARCH, self).__init__() + self.p = int(p) + self.o = int(o) + self.q = int(q) + self.num_params = p + o + q + if p < 0 or o < 0 or q < 0: + raise ValueError('All lags lengths must be non-negative') + if p == 0 and o == 0: + raise ValueError('One of p or o must be strictly positive') + self.name = 'Variance Targeting ' + self._name() + + def bounds(self, resids): + bounds = super(VarianceTargetingGARCH, self).bounds(resids) + return bounds[1:] + + def constraints(self): + a, b = super(VarianceTargetingGARCH, self).constraints() + a = a[1:, 1:] + b = b[1:] + return a, b + + def compute_variance(self, parameters, resids, sigma2, backcast, + var_bounds): + + # Add target + target = (resids ** 2).mean() + abar = parameters[:self.p].sum() + gbar = parameters[self.p:self.p + self.o].sum() + bbar = parameters[self.p + self.o:].sum() + omega = target * (1 - abar - 0.5 * gbar - bbar) + omega = max(omega, np.finfo(np.double).eps) + parameters = np.r_[omega, parameters] + + fresids = np.abs(resids) ** 2.0 + sresids = np.sign(resids) + + p, o, q = self.p, self.o, self.q + nobs = resids.shape[0] + + garch_recursion(parameters, fresids, sresids, sigma2, p, o, q, nobs, + backcast, var_bounds) + return sigma2 + + def simulate(self, parameters, nobs, rng, burn=500, initial_value=None): + if initial_value is None: + initial_value = parameters[0] + + parameters = self._targeting_to_stangard_garch(parameters) + return super(VarianceTargetingGARCH, self).simulate(parameters, nobs, rng, burn=burn, + initial_value=initial_value) + + def _targeting_to_stangard_garch(self, parameters): + p, o = self.p, self.o + abar = parameters[:p].sum() + gbar = parameters[p:p + o].sum() + bbar = parameters[p + o:].sum() + const = parameters[0](1 - abar - 0.5 * gbar - bbar) + return np.r_[const, parameters] + + def parameter_names(self): + return _common_names(self.p, self.o, self.q)[1:] + + def _analytic_forecast(self, parameters, resids, backcast, var_bounds, start, horizon): + parameters = self._targeting_to_stangard_garch(parameters) + return super(VarianceTargetingGARCH, self)._analytic_forecast(parameters, resids, + backcast, var_bounds, + start, horizon) + + def _simulation_forecast(self, parameters, resids, backcast, var_bounds, start, horizon, + simulations, rng): + parameters = self._targeting_to_stangard_garch(parameters) + return super(VarianceTargetingGARCH, self)._simulation_forecast(parameters, resids, + backcast, var_bounds, + start, horizon, + simulations, rng) + + def starting_values(self, resids): + p, o, q = self.p, self.o, self.q + alphas = [.01, .05, .1, .2] + gammas = alphas + abg = [.5, .7, .9, .98] + abgs = list(itertools.product(*[alphas, gammas, abg])) + + svs = [] + var_bounds = self.variance_bounds(resids) + backcast = self.backcast(resids) + llfs = np.zeros(len(abgs)) + for i, values in enumerate(abgs): + alpha, gamma, agb = values + sv = np.ones(p + o + q) + if p > 0: + sv[:p] = alpha / p + agb -= alpha + if o > 0: + sv[p: p + o] = gamma / o + agb -= gamma / 2.0 + if q > 0: + sv[p + o:] = agb / q + svs.append(sv) + llfs[i] = self._gaussian_loglikelihood(sv, resids, backcast, var_bounds) + loc = np.argmax(llfs) + + return svs[int(loc)]