Skip to content

Commit

Permalink
ENH: Add variance targetting GARCH model
Browse files Browse the repository at this point in the history
Add a VT GARCH model
Note that inference isn't correct
  • Loading branch information
bashtage committed Jan 4, 2019
1 parent 8a3c5ff commit e6a5980
Show file tree
Hide file tree
Showing 2 changed files with 164 additions and 5 deletions.
4 changes: 2 additions & 2 deletions arch/univariate/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,12 @@
from arch.univariate.mean import HARX, ConstantMean, ZeroMean, ARX, arch_model, LS
from arch.univariate.volatility import (GARCH, ARCH, HARCH, ConstantVariance, EWMAVariance,
RiskMetrics2006, EGARCH, FixedVariance, MIDASHyperbolic,
FIGARCH)
FIGARCH, VarianceTargetingGARCH)
from arch.univariate.distribution import (Distribution, Normal, StudentsT, SkewStudent,
GeneralizedError)

__all__ = ['HARX', 'ConstantMean', 'ZeroMean', 'ARX', 'arch_model', 'LS',
'GARCH', 'ARCH', 'HARCH', 'ConstantVariance',
'EWMAVariance', 'RiskMetrics2006', 'EGARCH',
'EWMAVariance', 'RiskMetrics2006', 'EGARCH', 'VarianceTargetingGARCH',
'Distribution', 'Normal', 'StudentsT', 'SkewStudent', 'GeneralizedError',
'FixedVariance', 'MIDASHyperbolic', 'FIGARCH']
165 changes: 162 additions & 3 deletions arch/univariate/volatility.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,8 @@

from arch.compat.python import add_metaclass, range

from abc import abstractmethod
import itertools
from abc import abstractmethod
from warnings import warn

import numpy as np
Expand Down Expand Up @@ -948,8 +948,7 @@ def starting_values(self, resids):
if q > 0:
sv[1 + p + o:1 + p + o + q] = agb / q
svs.append(sv)
llfs[i] = self._gaussian_loglikelihood(sv, resids, backcast,
var_bounds)
llfs[i] = self._gaussian_loglikelihood(sv, resids, backcast, var_bounds)
loc = np.argmax(llfs)

return svs[int(loc)]
Expand Down Expand Up @@ -2702,3 +2701,163 @@ def _simulation_forecast(self, parameters, resids, backcast, var_bounds, start,

forecasts[:start] = np.nan
return VarianceForecast(forecasts, paths, shocks)


class VarianceTargetingGARCH(GARCH):
r"""
GARCH and related model estimation
The following models can be specified using GARCH:
* ARCH(p)
* GARCH(p,q)
* GJR-GARCH(p,o,q)
* AVARCH(p)
* AVGARCH(p,q)
* TARCH(p,o,q)
* Models with arbitrary, pre-specified powers
Parameters
----------
p : int
Order of the symmetric innovation
o : int
Order of the asymmetric innovation
q: int
Order of the lagged (transformed) conditional variance
Attributes
----------
num_params : int
The number of parameters in the model
Examples
--------
>>> from arch.univariate import VarianceTargetingGARCH
Standard GARCH(1,1) with targeting
>>> vt = VarianceTargetingGARCH(p=1, q=1)
Asymmetric GJR-GARCH process with targeting
>>> vt = VarianceTargetingGARCH(p=1, o=1, q=1)
Notes
-----
In this class of processes, the variance dynamics are
.. math::
\sigma_{t}^{\lambda}=
bar{\omega}(1-\sum_{i=1}^{p}\alpha_{i}
- \frac{1}{2}\sum_{j=1}^{o}\gamma_{j}
- \sum_{k=1}^{q}\beta_{k})
+ \sum_{i=1}^{p}\alpha_{i}\left|\epsilon_{t-i}\right|^{\lambda}
+\sum_{j=1}^{o}\gamma_{j}\left|\epsilon_{t-j}\right|^{\lambda}
I\left[\epsilon_{t-j}<0\right]+\sum_{k=1}^{q}\beta_{k}\sigma_{t-k}^{\lambda}
"""

def __init__(self, p=1, o=0, q=1):
super(VarianceTargetingGARCH, self).__init__()
self.p = int(p)
self.o = int(o)
self.q = int(q)
self.num_params = p + o + q
if p < 0 or o < 0 or q < 0:
raise ValueError('All lags lengths must be non-negative')
if p == 0 and o == 0:
raise ValueError('One of p or o must be strictly positive')
self.name = 'Variance Targeting ' + self._name()

def bounds(self, resids):
bounds = super(VarianceTargetingGARCH, self).bounds(resids)
return bounds[1:]

def constraints(self):
a, b = super(VarianceTargetingGARCH, self).constraints()
a = a[1:, 1:]
b = b[1:]
return a, b

def compute_variance(self, parameters, resids, sigma2, backcast,
var_bounds):

# Add target
target = (resids ** 2).mean()
abar = parameters[:self.p].sum()
gbar = parameters[self.p:self.p + self.o].sum()
bbar = parameters[self.p + self.o:].sum()
omega = target * (1 - abar - 0.5 * gbar - bbar)
omega = max(omega, np.finfo(np.double).eps)
parameters = np.r_[omega, parameters]

fresids = np.abs(resids) ** 2.0
sresids = np.sign(resids)

p, o, q = self.p, self.o, self.q
nobs = resids.shape[0]

garch_recursion(parameters, fresids, sresids, sigma2, p, o, q, nobs,
backcast, var_bounds)
return sigma2

def simulate(self, parameters, nobs, rng, burn=500, initial_value=None):
if initial_value is None:
initial_value = parameters[0]

parameters = self._targeting_to_stangard_garch(parameters)
return super(VarianceTargetingGARCH, self).simulate(parameters, nobs, rng, burn=burn,
initial_value=initial_value)

def _targeting_to_stangard_garch(self, parameters):
p, o = self.p, self.o
abar = parameters[:p].sum()
gbar = parameters[p:p + o].sum()
bbar = parameters[p + o:].sum()
const = parameters[0](1 - abar - 0.5 * gbar - bbar)
return np.r_[const, parameters]

def parameter_names(self):
return _common_names(self.p, self.o, self.q)[1:]

def _analytic_forecast(self, parameters, resids, backcast, var_bounds, start, horizon):
parameters = self._targeting_to_stangard_garch(parameters)
return super(VarianceTargetingGARCH, self)._analytic_forecast(parameters, resids,
backcast, var_bounds,
start, horizon)

def _simulation_forecast(self, parameters, resids, backcast, var_bounds, start, horizon,
simulations, rng):
parameters = self._targeting_to_stangard_garch(parameters)
return super(VarianceTargetingGARCH, self)._simulation_forecast(parameters, resids,
backcast, var_bounds,
start, horizon,
simulations, rng)

def starting_values(self, resids):
p, o, q = self.p, self.o, self.q
alphas = [.01, .05, .1, .2]
gammas = alphas
abg = [.5, .7, .9, .98]
abgs = list(itertools.product(*[alphas, gammas, abg]))

svs = []
var_bounds = self.variance_bounds(resids)
backcast = self.backcast(resids)
llfs = np.zeros(len(abgs))
for i, values in enumerate(abgs):
alpha, gamma, agb = values
sv = np.ones(p + o + q)
if p > 0:
sv[:p] = alpha / p
agb -= alpha
if o > 0:
sv[p: p + o] = gamma / o
agb -= gamma / 2.0
if q > 0:
sv[p + o:] = agb / q
svs.append(sv)
llfs[i] = self._gaussian_loglikelihood(sv, resids, backcast, var_bounds)
loc = np.argmax(llfs)

return svs[int(loc)]

0 comments on commit e6a5980

Please sign in to comment.