-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
better examples for volcano and maxdprop
- Loading branch information
Showing
9 changed files
with
241 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,241 @@ | ||
## ----eval=FALSE---------------------------------------------------------- | ||
# # 1. Build latest developmental version from Github: | ||
# devtools::install_github("bartongroup/rats") | ||
# | ||
# # 2. Load into R session. | ||
# library{rats} | ||
# | ||
# # 3. Specify transcript grouping: | ||
# my_identifiers_table <- annot2ids("my_annotation.gtf") | ||
# | ||
# # 4a. Call DTU on a sleuth object, using default settings: | ||
# mydtu <- call_DTU(annot= my_identifiers_table, slo= my_sleuth_object, | ||
# name_A= "My_condition", name_B= "My_other_condition") | ||
# # 4b. Call DTU on generic bootstrapped abundance estimates: | ||
# mydtu <- call_DTU(annot= my_identifiers_table, boot_data_A= my_list_data_tables_A, | ||
# boot_data_B= my_list_data_tables_A) | ||
# # 4c. Call DTU on generic abundance estimates: | ||
# mydtu <- call_DTU(annot= my_identifiers_table, count_data_A= my_data_table_A, | ||
# count_data_B= my_data_table_B, boots= "none") | ||
# | ||
# # 5. Get all gene and transcript identifiers per category (significant DTU, | ||
# # no DTU, Not Applicable): | ||
# myids <- get_dtu_ids(mydtu) | ||
# | ||
# # 6. Plot significance VS effect size: | ||
# plot_overview(mydtu) | ||
|
||
## ------------------------------------------------------------------------ | ||
library(rats) | ||
|
||
## ------------------------------------------------------------------------ | ||
# Show the first rows of the table corresponding to one sample, from simulated data. | ||
head(sim_boot_data()[[2]][[1]]) | ||
|
||
## ------------------------------------------------------------------------ | ||
# Show the first rows of the table corresponding to the annotation, from simulated data. | ||
head(sim_count_data()[[1]]) | ||
|
||
## ----eval=FALSE---------------------------------------------------------- | ||
# # Extract transcript ID to gene ID index from a GTF annotation. | ||
# myannot <- annot2ids("my_annotation_file.gtf") | ||
|
||
## ------------------------------------------------------------------------ | ||
# Simulate some data. | ||
simdat <- sim_count_data() | ||
|
||
# For convenience let's assign the contents of the list to separate variables. | ||
mycond_A <- simdat[[2]] # Simulated abundances for one condition. | ||
mycond_B <- simdat[[3]] # Simulated abundances for other condition. | ||
myannot <- simdat[[1]] # Transcript and gene Identifiers for the above data. | ||
|
||
## ------------------------------------------------------------------------ | ||
# Find DTU between the simulated datasets. | ||
mydtu <- call_DTU(annot= myannot, count_data_A= mycond_A, count_data_B= mycond_B, | ||
boots= "none", verbose= FALSE, | ||
name_A= "healthy", name_B= "patients", varname= "My phenotype", | ||
description="Comparison of two simulated counts datasets for the | ||
tutorial. Simulated using built-in functionality of | ||
`rats`.") | ||
|
||
## ------------------------------------------------------------------------ | ||
# Simulate some data. | ||
simdat <- sim_boot_data() | ||
|
||
# For convenience let's assign the contents of the list to separate variables. | ||
mycond_A <- simdat[[2]] # Simulated bootstrapped data for one condition. | ||
mycond_B <- simdat[[3]] # Simulated bootstrapped data for other condition. | ||
myannot <- simdat[[1]] # Transcript and gene Identifiers for the above data. | ||
|
||
## ------------------------------------------------------------------------ | ||
# Find DTU between conditions "controls" and "patients" in the simulated data. | ||
mydtu <- call_DTU(annot= myannot, boot_data_A= mycond_A, boot_data_B= mycond_B, | ||
name_A= "wildtype", name_B= "some mutant", varname = "My phenotype", | ||
verbose= FALSE, description="Comparison of two simulated datasets | ||
of bootstrapped counts for the tutorial. Simulated using built-in | ||
functionality of `rats`.") | ||
|
||
## ------------------------------------------------------------------------ | ||
# Simulate some data. | ||
simdat <- sim_sleuth_data(cnames = c("controls", "patients")) | ||
# controls and patients are arbitrary names to use as conditions. | ||
|
||
# For convenience let's assign the contents of the list to separate variables. | ||
myslo <- simdat$slo # Simulated minimal sleuth object. | ||
myannot <- simdat$annot # Transcript and gene Identifiers for the above data. | ||
|
||
## ------------------------------------------------------------------------ | ||
# Find DTU between conditions "controls" and "patients" in the simulated data. | ||
mydtu <- call_DTU(annot = myannot, slo = myslo, name_A = "controls", name_B = "patients", | ||
varname= "condition", verbose= FALSE, | ||
description="Using a simulated sleuth object for the purposes of the tutorial. | ||
Simulated using built-in functionality of `rats`.") | ||
|
||
## ------------------------------------------------------------------------ | ||
# See available variables and values. | ||
print( myslo$sample_to_covariates ) | ||
|
||
## ----eval=FALSE---------------------------------------------------------- | ||
# # Compare samples by a non-default variable. | ||
# mydtu <- call_DTU(annot= myannot, slo= myslo, name_A= "ba", name_B= "bb", varname= "batch") | ||
|
||
## ------------------------------------------------------------------------ | ||
# A really simple tally of the outcome. | ||
print( dtu_summary(mydtu) ) | ||
|
||
## ------------------------------------------------------------------------ | ||
# Gene and transcript IDs corresponding to the tally above. | ||
ids <- get_dtu_ids(mydtu) | ||
|
||
# Contents | ||
print( names(ids) ) | ||
|
||
# DTU positive genes. | ||
print( ids[["dtu-genes"]] ) | ||
|
||
## ------------------------------------------------------------------------ | ||
print( names(mydtu) ) | ||
|
||
## ------------------------------------------------------------------------ | ||
# Parameter list's elements. | ||
print( names(mydtu$Parameters) ) | ||
|
||
## ------------------------------------------------------------------------ | ||
# Genes table's fields. | ||
print( names(mydtu$Genes) ) | ||
|
||
## ------------------------------------------------------------------------ | ||
# Transcripts table's fields. | ||
print( names(mydtu$Transcripts) ) | ||
|
||
## ------------------------------------------------------------------------ | ||
# Let's check the info and settings. | ||
print( mydtu$Parameters ) | ||
|
||
## ------------------------------------------------------------------------ | ||
# Gene-level calls. | ||
print( mydtu$Genes ) | ||
|
||
## ------------------------------------------------------------------------ | ||
# Transcript-level calls. | ||
print( mydtu$Transcripts ) | ||
|
||
## ------------------------------------------------------------------------ | ||
# Proportion changes for all the transcripts of the "MIX6" gene. | ||
plot_gene(mydtu, "MIX6", vals="proportions") | ||
|
||
## ------------------------------------------------------------------------ | ||
# Absolute expression changes for all the transcripts of the "MIX6" gene. | ||
# The ERROR BARS represent 2 standard deviations from the mean count across replicates. | ||
plot_gene(mydtu, "MIX6", vals="counts") | ||
|
||
## ------------------------------------------------------------------------ | ||
# Proportion change VS significance. | ||
plot_overview(mydtu, type="volcano") | ||
|
||
## ------------------------------------------------------------------------ | ||
# Distribution of maximum proportion change. | ||
plot_overview(mydtu, type="maxdprop") | ||
|
||
## ------------------------------------------------------------------------ | ||
library(ggplot2) | ||
|
||
myplot <- plot_overview(mydtu, "volcano") | ||
myplot # display | ||
|
||
# Change scale of y axis to linear. | ||
myplot2 <- myplot + scale_y_continuous(trans = "identity") | ||
myplot2 | ||
|
||
## ----eval=FALSE---------------------------------------------------------- | ||
# # Calling DTU with custom thresholds. | ||
# mydtu <- call_DTU(annot = myannot, slo = myslo, name_A = "controls", name_B = "patients", | ||
# p_thresh = 0.01, count_thresh = 10, dprop_thresh = 0.25) | ||
|
||
## ------------------------------------------------------------------------ | ||
# Compare by a different variable. In this case "batch". | ||
mydtu <- call_DTU(annot = myannot, slo = myslo, name_A = "ba", name_B = "bb", | ||
varname= "batch", verbose = FALSE) | ||
|
||
## ----eval=FALSE---------------------------------------------------------- | ||
# # Bootstrap both types of DTU calls (default), for 100 iterations (default). | ||
# mydtu <- call_DTU(annot = myannot, slo = myslo, name_A = "controls", | ||
# name_B = "patients", boots = "both", bootnum = 100) | ||
# | ||
# # Only bootstrap transcript calls. | ||
# mydtu <- call_DTU(annot = myannot, slo = myslo, name_A = "controls", | ||
# name_B = "patients", boots = "transc") | ||
# | ||
# # Only bootstrap gene calls. | ||
# mydtu <- call_DTU(annot = myannot, slo = myslo, name_A = "controls", | ||
# name_B = "patients", boots = "genes") | ||
# | ||
# # Skip bootstraps. | ||
# mydtu <- call_DTU(annot = myannot, slo = myslo, name_A = "controls", | ||
# name_B = "patients", boots = "none") | ||
|
||
## ----eval=FALSE---------------------------------------------------------- | ||
# mydtu <- call_DTU(annot = myannot, slo = myslo, name_A = "controls", | ||
# name_B = "patients", conf_thresh = 0.9) | ||
|
||
## ----eval=FALSE---------------------------------------------------------- | ||
# # Transcript-level confidence threshold VS. number of DTU positive calls. | ||
# plot_overview(mydtu, type="transc_conf") | ||
# | ||
# # Gene-level confidence threshold VS. number of DTU positive calls. | ||
# plot_overview(mydtu, type="gene_conf") | ||
|
||
## ----eval=FALSE---------------------------------------------------------- | ||
# # Transcripts only. | ||
# mydtu <- call_DTU(annot = myannot, slo = myslo, name_A = "controls", | ||
# name_B = "patients", testmode="transc") | ||
# # Genes only. | ||
# mydtu <- call_DTU(annot = myannot, slo = myslo, name_A = "controls", | ||
# name_B = "patients", testmode="genes") | ||
|
||
## ----eval=FALSE---------------------------------------------------------- | ||
# # Bonferroni correction. | ||
# mydtu <- call_DTU(annot = myannot, slo = myslo, name_A = "controls", | ||
# name_B = "patients", correction = "bonferroni") | ||
|
||
## ------------------------------------------------------------------------ | ||
# Lets emulate some input with custom field names. | ||
sim <- sim_sleuth_data(varname="mouse", cnames=c("Splinter", "Mickey"), | ||
COUNTS_COL="the-counts", TARGET_COL="transcript", | ||
PARENT_COL="gene", BS_TARGET_COL = "trscr") | ||
myslo <- sim$slo | ||
myannot <- sim$annot | ||
|
||
print( sim$slo$sample_to_covariates ) | ||
print( head(sim$slo$kal[[1]]$bootstrap[[1]]) ) | ||
print( head(sim$annot) ) | ||
|
||
## ------------------------------------------------------------------------ | ||
# Call DTU on data with custom field names. | ||
mydtu <- call_DTU(annot = myannot, slo = myslo, name_A = "Splinter", name_B = "Mickey", | ||
varname="mouse", TARGET_COL="transcript", PARENT_COL="gene", | ||
COUNTS_COL="the-counts", BS_TARGET_COL="trscr", verbose = FALSE) | ||
|
||
## ------------------------------------------------------------------------ | ||
print( names(mydtu$Transcripts) ) | ||
|
Binary file modified
BIN
+939 Bytes
(100%)
vignettes/tutorial_files/figure-html/unnamed-chunk-25-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified
BIN
+939 Bytes
(100%)
vignettes/tutorial_files/figure-html/unnamed-chunk-27-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified
BIN
-202 Bytes
(99%)
vignettes/tutorial_files/figure-html/unnamed-chunk-27-2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.