-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathch6.tex
878 lines (789 loc) · 36 KB
/
ch6.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
% -----------------------------------------------------------
%
% CHAPTER 6 of Quantum information with atoms and photons
%
% written by Francesco Barone, Jan 2023
% contributions from Giosuè Sardo Infirri
% -----------------------------------------------------------
Different strategies are used to correlate energy levels of a system made of more than one atom.\\
\noindent \textbf{\sffamily Rydberg strategy}\\
The Rydberg atoms technology is based on the fact that there are infinite energy levels before the ionization of an atom. A \textit{Rydberg atom} is an excited atom with one or more electrons that have a very high principal quantum number $n$.
\\
Some properties of the Rydberg atoms are good response to electric and magnetic fields, long decay periods and electron wavefunctions that approximate, under some conditions, classical orbits of electrons around the nucleus.
\\
Since the radius of the orbit scales as $n^{2}$ and the geometric cross-section as $n^{4}$, these atoms that are extremely large, with loosely bounded valence electrons, are easily perturbed or ionized by collisions and external fields. In particular, we are able to ionize atoms up to the levels $50\,S-100\,S$, where they have a radius of the order of 1 $\mu$m ($10^{4}$ times larger than that of an atom in ground state).
\\
Such properties permit to interact and manipulate these atoms efficiently. \\
\noindent\textbf{\sffamily Ion traps}\\
Another strategy consists of trapping many similar ions in an harmonic potential, like a sort of lattice\footnote{We (students) suggest to look at this documentation (\href{https://pennylane.ai/qml/demos/tutorial_trapped_ions.html}{Pennylane: Trapped ion quantum computers}) for a very general overview of trapped ion quantum computers.}. The Coulomb interaction between the centre of mass of the ions is relevant and two types of degrees of freedom are present:
\begin{itemize}
\setlength\itemsep{1em}
\item external degrees of freedom, which correspond to the center of mass position;
\item internal degrees of freedom, which correspond to the electronic levels.
\end{itemize}
It is important to notice that the interaction between the external degrees of freedom of different atoms is always established, while the one between the internal and the external ones is more complicated and it is discussed in the following section.
\section{Lamb-Dicke coupling for a trapped ion}
Consider a system made of:
\begin{itemize}
\item an hydrogen-like atom;
\item an harmonic trap for the centre-of-mass coordinate;
\item a laser with a frequency close to one associated to an optical transition.
\end{itemize}
\begin{center}
\input{img/lamb-dicke-sketch.tex}
\end{center}
\begin{tcolorbox} [breakable, enhanced]
\textbf{Example: Ca$^+$ ion} \\
A $Ca^+$ ion resembles very much an hydrogen-like atom, with $Z_{\text{eff}}=2$
\begin{center}
\input{img/Ca-dicke-example.tex}
\end{center}
In the figure, we sketch the energy levels which are typically of interest in practical applications.
\end{tcolorbox}
\begin{tcolorbox} [breakable, enhanced]
\textbf{\textit{Paul trap} (or \textit{quadrupole ion trap})} \\
A different configuration with respect to the harmonic trap is possible. In particular, consider a system in which the atom is in the middle of four metal rods orthogonal to the $xy$ plan, as shown in the figure. Two rods have a positive charge and two have a negative charge, so that the potential in the position of the atom has always a saddle point. The charges on the rods oscillate (swapping signs) very rapidly: the atom doesn't have the time to start drifting towards any of them; along the $z$ axis the atom is trapped by two positive electrodes. The uncertainty on the position of the atom is dominant on the $z$ axis.
\begin{center}
\scalebox{1.3}{
\input{img/sketch-trap-dicke.tex}
}
\end{center}
\end{tcolorbox}
Notice that the described system has three relevant length-scales:
\begin{itemize}
\item the typical atomic radius, which can be approximated with the Bohr radius of outer electron $\tilde{a}_0$:
\begin{equation*}
\tilde{a_0} \simeq \frac{n^2}{Z_{\text{eff}}} a_0 =
\frac{4^2}{2}\frac{4\pi \varepsilon_0 \hbar}{m e^2} \simeq 0.42 ~\text{nm},
\end{equation*}
where $a_0$ is the Hydrogen Bohr radius.
\item the wavelength of the laser light
$$\lambda_L = \frac{2\pi c}{\omega_L} \in \big( \underbrace{100~\text{nm}}_{UV}, \underbrace{1~\mu\text{m}}_{UV} \big)$$
\item uncertainty in the atom position $\Delta z_{CM}$, which clearly depends on the trapping potential; considering an harmonic potential along the $z$ direction, we have
$$V(z_{CM}) = \frac{1}{2}m_A\omega_\text{trap}^2z^2$$
where $m_A$ is the mass of the atom/ion (for Ca$^+$, $m_\text{Ca} \simeq 40\;m_\text{proton}$) and $\omega_T$ is the trap harmonic frequency. Typical traps have $\omega_T/2\pi \in (0.1 \sim 10)$ MHz. \\
To estimate $\Delta z_{CM}$, one has to start form the Hamiltonian of the harmonic oscillator
$$\bar{H} = \frac{\hat{P}^2}{2m_A} + \frac{1}{2}m_A\omega_T^2\hat{z}^2 =
\hbar\omega_T\left(\hat{a}^\dag \hat{a} +\frac{1}{2}\right),$$
where the ladder operators
\begin{equation*}
\hat{z} = \sqrt{\frac{\hbar}{2m_A\omega_T}}\left(\hat{a}+\hat{a}^\dag\right)
\qquad \text{and} \qquad
\hat{P} = \sqrt{\frac{\hbar m_A\omega_T}{2}}i\left(\hat{a}^\dag-\hat{a}\right)
\end{equation*}
are introduced. If we assume that the center-of-mass is in the ground state of the harmonic oscillator, then
\begin{align*}
\bra{0}\hat{z}\ket{0} =
\sqrt{\frac{\hbar}{2m_A\omega_T}}
\big( \langle \hat{a}\rangle + \langle \hat{a}^\dag\rangle \big)
=0
\end{align*}
and its variance is
\begin{align*}
\Delta \vec{z} & = \sqrt{\bra{0} \hat{z}^2\ket{0} - \bra{0}\hat{z}\ket{0}^2} = \\
& =
\sqrt{\frac{\hbar}{2m_A\omega_T}
\left(
\cancel{\langle \hat{a}^2\rangle}
+ \cancel{\langle \hat{a}^\dag \hat{a} \rangle}
+ \underbrace{\langle \hat{a} \hat{a}^\dag
\rangle}_{=1}
+\cancel{\langle {a^\dag}^2\rangle}
\right) =
}\\
& = \sqrt{\frac{\hbar}{2m_A\omega_T}} =
\sqrt{\frac{h}{2m_A(\omega_T/2\pi)}}
\end{align*}
Inserting the parameters for Ca$^+$, we expect $\Delta \vec{z}$ to be in the range $10-100$ nm.
\end{itemize}
To summarize, the involved length-scales are:
\begin{align*}
\text{atom size} ~\tilde{a}_0 \qquad \quad & 1 ~\text{nm,} \\
\text{laser wavelength} ~\lambda_L \qquad \quad &400~\text{nm}, 850~\text{nm}\\
\text{position uncertainty} ~\Delta \vec{z} \qquad \quad & 10-100~\text{nm.}
\end{align*}
Supported by those values, it is reasonable to consider from now on that
\begin{align*}
\underbrace{\lambda_L \quad \gg \quad \Delta z }_{\eta\;\ll\;1} \quad \gg \quad \tilde{a}_0.
\end{align*}
\begin{center}
\input{img/dicke-sketch.tex}
\end{center}
One can define $\eta$ as the \textit{Lamb-Dicke parameter}, which is practically the ratio between atom ground-state packet size (confinement dependent) and laser wavelength
\begin{equation*}
\eta = \Delta\vec{z}\cdot\vec{k} =
\frac{2\pi\Delta z}{\lambda}\cos\theta,
\end{equation*}
with $\theta$ being the angle between the laser and trap (1D direction). The \textit{Lamb-Dicke regime} corresponds to the condition in which $\eta \ll 1$.
%\textbf{Remark}: In Innsbruck they use $\eta = 1/20$. In general, a bigger value of $\eta$ leads to a bad approximations. $\eta \sim 0.1$ is still good. On the other hand, a smaller value of $\eta$ slows down the dynamics of our system.
Let us go back to the trapped atom system under the latest assumptions.
The contributions to the Hamiltonian are:
\begin{align*}
H^A_{rel} &= \hbar \omega_{eg} \ket{e}\bra{e} \qquad \qquad \text{atom relative coordinate,} \\
H_{CoM}^A &= \hbar \omega_{T} \hat{a}^\dag \hat{a} + \cancel{\frac{1}{2}} \qquad \text{atom center-of-mass coordinate,} \\
H_{AL} &= - \hat{\vec{d}} \cdot \hat{\vec{E}}(\hat{\vec{r}}_{CoM}) \qquad \qquad \text{atom-light interaction.}
\end{align*}
$H_{CoM}^A$ can be considered as the ``phonon" Hamiltonian, while in the last expression we have taken the electric field operator in the center-of-mass coordinate because of $\Delta z\gg a_0$. In particular,
$$\hat{\vec{d}} = \vec{d}_{eg}\ket{e}\bra{g} + \vec{d}^*_{eg}\ket{g}\bra{e} \;,$$
\begin{equation*}
\hat{\vec{E}}(\vec{r}_{CoM}) = \sum_{k\lambda} \sqrt{\frac{\hbar\omega_k}{2\varepsilon_0}}\vec\epsilon_{\lambda} \, 2 \mathfrak{Im}\left(u_{\vec{k},\lambda}(\hat{\vec{r}}_{CoM})\hat{a}_{\vec{k},\lambda}\right).
\end{equation*}
Considering a coherent light (laser) ($\vec{k}, \lambda$), the radiation is described by the Fock state
$$\ket{\psi_L} = \ket{0} \otimes ... \otimes \ket{0} \otimes \ket{\alpha_{\vec{k},\lambda}} \otimes \ket{0} \otimes ... \otimes \ket{0}$$
and therefore
\begin{flalign*}
{\bra{\psi_L} \hat{\vec{E}}\ket{\psi_L}(\hat{\vec{r}}_{CoM})} = \vec{\mathcal{E}}\cos\left(c|\vec{k}|t-\vec{k}\cdot\hat{\vec{r}}\right) = \vec{\mathcal{E}}\cos\left(ckt-kz\cos\theta \right),
\end{flalign*}
where in the last equation one uses the fact that the trap is tight in $x$ and $y$, $\Rightarrow \hat{\vec{r}} = (0\;\;0\;\;\hat{z})$ (no motion is allowed in xy).
Introducing the usual Rabi frequency $\Omega = \dfrac{\vec{d}_{eg} \cdot \vec{\mathcal{E}}}{\hbar}$, the effective Hamiltonian of atom-light interaction is
\begin{equation}
H_{AL}^{\text{eff}} = \hbar\Omega\ket{e}\bra{g}
\cos\left(ckt-kz\cos\theta\right)
+ \text{h.c.}
\label{eq:effective-atomlight-ham}
\end{equation}
Collecting all these considerations, the full Hamiltonian in the laboratory frame is
\begin{equation*}
H^{lab} = \hbar\omega_{eg}\ket{e}\bra{e}
\;+\;
\hbar\omega_Ta^\dag a
\;+\;
\left(
\hbar\Omega \ket{e}\bra{g}\cos\left(ckt-kz\cos\theta\right) + \text{h.c.}
\right)
\end{equation*}
Switching to a rotating frame with laser frequency $\omega_L = ck$, and requiring that $\Omega,\Delta \ll \omega_{eg}, \omega_L$, the Hamiltonian is
\begin{equation*}
H^{rot} = - \hbar \Delta
\ket{e}\bra{e} +
\hbar\omega_Ta^\dag a +
\frac{\hbar\Omega}{2}e^{-i k \hat{z}\cos\theta} \ket{e}\bra{g} +
\cancel{V(t)} + \text{h.c.}
\end{equation*}
where we have set $\Delta\equiv\omega_L-\omega_{eg}$ and $V(t)$ cancels out if we assume the timescale separation $\Omega, \Delta, \omega_T \ll \omega_L$. \\
At this point, one can observe that
$$k\hat{z} \cos\theta = k \sqrt{\frac{\hbar}{2m_A\omega_T}}(a+a^\dag) \cos\theta =
(\Delta z k \cos\theta)(a+a^\dag) = \eta (a^\dag + a) \;\;.$$
\noindent Being $\eta$ sufficiently small (due to Lamb-Dicke regime), the expansion up to second order is
$$e^{-i\eta(a^\dag+a)}\simeq 1- i\eta(a^\dag +a) + O(\eta^2) \;\;,$$ from which
\begin{align*}
\Rightarrow H^{rot} = &
-\hbar \Delta\ket{e}\bra{e}
+ \frac{\hbar\Omega}{2}
\underbrace{\left( \ket{e}\bra{g}+\ket{g}\bra{e} \right)}_{\sigma^x} +
\tag*{internal degrees of freedom only} \\
& + \hbar\omega_Ta^\dag a +
\tag*{phononic contribution only}\\
& + \eta\frac{\hbar\Omega}{2}
\underbrace{\left(-i\ket{e}\bra{g}+i\ket{g}\bra{e}\right)}
_{-\sigma_y}
\left( a + a^\dag \right) +
\tag*{Lamb-Dicke effective coupling (sidebands)}\\
&+ \mathcal{O}(\eta^2) \tag*{higher-order corrections/sidebands}
\end{align*}
Finally, one can write
\begin{align}
H^{rot} &= -\hbar \Delta\ket{e}\bra{e} +
\hbar\omega_Ta^\dag a +
\frac{\hbar\Omega}{2}\sigma^x +
\eta\frac{\hbar\Omega}{2}\sigma^y
\left( a + a^\dag \right)
\end{align}
To understand the physics described by this Hamiltonian, let us start from the situation in which $\Omega = \omega_L =0 $: in this case only the bare spectrum of the atomic system survives. Instead, when the laser light is turned on, any generic level $\ket{g,n}$ couples to $\ket{e, n-1}, \ket{e,n}$ and $\ket{e, n+1}$, as shown in the following figure.
\begin{center}
\input{img/dicke-general.tex}
\includegraphics[height=4cm]{img/dicke-red-plot.png}
\end{center}
\subsubsection{Sideband coupling}
There are three coupling sub-regimes, depending on the frequency to which the laser is tuned and the are represented in figure \ref{fig:sideband-coupling}.We analyze each case separately.
\begin{figure}[H]
\centering
\input{img/sideband-copulings.tex}
\caption{The three sub-regimes of sideband coupling.}
\label{fig:sideband-coupling}
\end{figure}
\begin{enumerate}
\item[1)] \textbf{Carrier resonance} ($\Delta = 0$, or at least $\Delta \ll \omega_T$)\\
In this regime, the laser is resonant with the direct transition $\Delta \ll \omega_T$ (and weak $\eta\Omega \ll \omega_T$). In particular, there is no coupling between $\ket{g,n}$ and $\ket{e, n\pm 1}$, because by construction $|\omega_T \pm \Delta| \approx \omega_T \;\gg\; \eta\Omega$ . The Hamiltonian is approximately
\begin{equation*}
H_\text{carrier} = \hbar\omega_Ta^\dag a
\;-\;
\hbar\Delta\ket{e}\bra{e}
\;+\;
\frac{\hbar\Omega}{2}\sigma^x
\sim \begin{pmatrix}
0&\Omega/2 \\
\Omega/2&\omega_T
\end{pmatrix}
\end{equation*}
having used the basis $\{\ket{g,n}, \ket{e, n+1}\}$ to write the matrix elements.
\item[2)] \textbf{Red sideband} ($\Delta \simeq -\omega_T$, or at least $|\omega_L - (\omega_{eg}-\omega_T)| \ll \omega_T$) \\
In this case, the laser is resonant with $\omega_{eg} -\omega_T$. We also require that $\Omega \ll \omega_T$.
The denomination ``red" is due to the fact that laser is detuned to a lower frequency (hence more ``red") than carrier. In practice, we ignore the direct and the blue transition, considering only couples $\ket{g,n} \longleftrightarrow \ket{e, n-1}$, as shown in the following figure.
\begin{center}
\input{img/dicke-red.tex}
\end{center}
The Hamiltonian in this case is
\begin{equation*}
\Rightarrow H_{\text{red}} = \hbar\omega_Ta^\dag a
-
\hbar\Delta\ket{e}\bra{e}
+
\eta\frac{\hbar\Omega}{2}
\left(-i\sigma_+a+i\sigma_-a^\dag\right),
\end{equation*}
which is the Jaynes-Cummings model (between phonon and level $e$). The difference with respect to the cavity is that the last contribution can be turned off, as the system is controlled by the laser.
\item[3)] \textbf{Blue sideband} ($\Delta \simeq +\omega_T$, or at least $|\omega_L - (\omega_{eg}+\omega_T)| \ll \omega_T$) \\
In this case, the laser is resonant with $\omega_{eg} +\omega_T$. We also require that $\Omega \ll \omega_T$. \\
We can check the energy scales for typical optical systems:
$$\underbrace{|\omega_L -(\omega_{eg}+\omega_T)|}_
{\sim \text{kHz}}
\ll
\underbrace{\omega_T}_{\text{MHz}},$$
The Hamiltonian in this regime is
\begin{equation*}
\Rightarrow H_{\text{blue}} = \hbar\omega_Ta^\dag a
-
\hbar\Delta\ket{e}\bra{e}
+
\frac{\eta\hbar\Omega}{2}
\left(-i\sigma_+a^\dag+i\sigma_-a\right).
\end{equation*}
It is called ``anti"-Jaynes-Cummings model.
\begin{center}
\input{img/dicke-blue.tex}
\end{center}
\end{enumerate}
\begin{tcolorbox} [breakable, enhanced]
\textbf{{Some observations about the effective Rabi frequency}} \\
Frequencies mismatch is an issue when designing multi-qubit gates on ion traps: asynchrony requires perfect cooling (or any other workaround). Indeed, if one considers traps in the order of MHz, the temperatures must be really low: 1 MHz $\simeq 48\mu$K. \\
The red sideband can be efficiently used to cool-down atom vibrations, as it reduces the effective number of phonon spontaneously (\textit{phonon drift}).
\end{tcolorbox}
\section{Two atoms in a linear trap}
%\marginnote{This is actually a path towards ion-qubit\\ (trapped ion)\\ quantum computation.}
\begin{center}
\input{img/sketch-trap-twoatoms.tex}
\end{center}
Consider the same trap used for the single ion (with a quadrupolar confining potential which effectively tights any atom to the $xy$ plane). If one puts two (identical) ions inside the trap, they crystallize due to their equal charge.
The Hamiltonian that describes the system is
\begin{equation}
\label{eq:atomsharmonic}
H \;=\;
\frac{(p_1^z)^2+(p_2^z)^2}{2m}
\;+\;
\underbrace{\frac{1}{2}m\omega_T^2(z_1^2+z_2^2)}
_{\text{trap on }{z}}
\;+\;
\underbrace{\frac{e^2 Z_{\text{eff}}^2
}{4\pi \varepsilon_0|z_1-z_2|}}
_{\text{Coulomb repulsion}}
\end{equation}
In particular, $Z_{\text{eff}}=1$ for any single-ionised atom. \\
There is no analytical exact solution to this problem. Nevertheless, one can solve a simpler classical problem, for instance under the hypothesis of small oscillations, and prove ``a posteriori" that the solution is consistent.
The fist step is a translation of the coordinates about the \textit{classical equilibrium position}
$\bar{z}_j$:
\begin{equation*}
\hat{z}_j \rightarrow \hat{z}_j' - \bar{z}_j\mathds{1}
\end{equation*}
Notice that $\bar{z}_j$ is just a number, not an operator, and that the commutation rules are preserved, i.e. $[z_i',p_j]=[z_i,p_j]+\bar{z}\cancel{[\mathbb{1},p_j]} = [z_i,p_j]$. \\
Since the two atoms are crystallized, one can choose which atom has the greater $z_i$ coordinate and orient $\vec{z}$ such that
$$\bar{z}_1 > \bar{z}_2 \qquad \implies \qquad \frac{1}{|z_1-z_2|} \xrightarrow[]{z_1>z_2} \frac{1}{z_1-z_2} \;\;.$$
Let us find $\bar{z}_1$ and $\bar{z}_2$.
On the hypothesis of \textit{classical equilibrium}, for a generic coordinate $q_j$ it is
\begin{align*}
\dot{p}_j = 0\qquad \implies \qquad
0 = -\dot{p}_j = \frac{\partial H}{\partial q_j}
\end{align*}
from which, in the $z_j$ coordinates,
\begin{align}
\label{eq:atomsmoments}
\frac{\partial H}{\partial z_j} \bigg\rvert_{\bar{z}_j} = 0
\;\;\Rightarrow\;\;
\begin{cases}
m\omega_T^2\bar{z}_1 -\dfrac{e^2}{4\pi\varepsilon_0(\bar{z}_1-\bar{z}_2)^2} = 0\\
m\omega_T^2\bar{z}_2 + \dfrac{e^2}{4\pi\varepsilon_0(\bar{z}_1-\bar{z}_2)^2} = 0
\end{cases}
\end{align}
Summing the equations, one gets easily that $\bar{z}_1=-\bar{z}_2$. Substituting back, the first equation reads
\begin{equation}
\label{eq:atomssymmetrycond}
m\omega_T^2\bar{z}_1 = \frac{e^2}{4\pi\varepsilon_0}\frac{1}{4\bar{z}_1^2}
\qquad \implies \qquad
\bar{z}_1 =
\left( \frac{e^2}{16\pi\varepsilon_0m\omega_T^2} \right)^{1/3} = -\bar{z}_2
\end{equation}
Now we want to rewrite Eq. \ref{eq:atomsharmonic} in prime coordinates. The coordinates of the Coulombian term can be expanded for small oscillations as
\begin{equation*}
|\hat{z}_1-\hat{z}_2|^{-1} \equalexpl{$z_1>z_2$}
(\hat{z}_1-\hat{z}_2)^{-1} \simeq
\frac{\mathds{1}}{\hat{z}_1-\hat{z}_2}
-\frac{\hat{z}_1'-\hat{z}_2'}{(\bar{z}_1-\bar{z}_2)^2}
+\frac{\cancel{2}}{\cancel{2}}\frac{(\hat{z}_1'-\hat{z}_2')^2}{(\bar{z}_1-\bar{z}_2)^3}
+{O}(\hat{z}_j^{\prime\;3})
\end{equation*}
whereas the trap term requires the square of the coordinates, which is
\begin{equation*}
\hat{z}_j = \hat{z}_j' + \bar{z}_j\mathds{1}
\qquad\implies\qquad
\hat{z}_j^2 = \hat{z}_j^{\prime\;2} +
2\bar{z}_j\hat{z}_j^\prime +
\bar{z}_j^2\mathds{1} \;\;.
\end{equation*}
Shifting away the constants, one ends up with the Hamiltonian
\begin{align}
\begin{split}
H_{\substack{\text{small} \\ \text{oscill.}}} = \; &
\frac{(p_1^z)^2+(p_2^z)^2}{2m}
\;+ \\
& +\; \frac{m\omega_T^2}{2}
\left(
\cancel{\bar{z}_1^2\mathds{1}} + \cancel{\bar{z}_2^2\mathds{1}}
+ 2 \bar{z}_1\hat{z}_1' + 2 \bar{z}_2\hat{z}_2'
+ \hat{z}_1^{\prime\;2} + \hat{z}_2^{\prime\;2}
\right) \;+ \\
& +\;
\frac{e^2}{4\pi \varepsilon_0}
\left(
\cancel{\frac{\mathds{1}}{ \hat{z}_1-\hat{z}_2 }} - \frac{\hat{z}_1'-\hat{z}_2'}{(\hat{z}_1-\hat{z}_2)^2}
+ \frac{(\hat{z}_1'-\hat{z}_2')^2}{(\hat{z}_1-\hat{z}_2)^3}
\right)
+{O}(\hat{z}_j^{\prime\;3})
\end{split}
\end{align}
Further simplifications can be done isolating the terms by their order:
\begin{itemize}
\item at first order in the prime coordinates, because of Equations \ref{eq:atomsmoments}
\begin{equation*}
(I) \qquad \longrightarrow \qquad
\hat{z}_1' \underbrace{
\left(
m\omega_T^2\bar{z}_1 - \frac{e^2}{4\pi\varepsilon_0(4\bar{z}_1^2)}
\right)
}_{=0} + \hat{z}_2' \underbrace{
\left(
m\omega_T^2\bar{z}_2 + \frac{e^2}{4\pi\varepsilon_0(4\bar{z}_2^2)}
\right)
}_{=0} = 0
\end{equation*}
Not surprisingly... this quantity is null by construction.
\item at second order
\begin{equation*}
(II) \qquad \longrightarrow \qquad
\frac{m\omega_T^2}{2}
\left( \hat{z}_1^{\prime\;2} + \hat{z}_2^{\prime\;2} \right)
+
\left( \hat{z}_1^{\prime\;2} - \hat{z}_2^{\prime\;2} \right)
{\frac{e^2}{4\pi\varepsilon_0}(\bar{z}_1-\bar{z}_2)^{-3}}
\end{equation*}
where, because of Eq. \ref{eq:atomssymmetrycond},
\begin{equation*}
\frac{e^2}{4\pi\varepsilon_0}(\bar{z}_1-\bar{z}_2)^{-3} =
\frac{e^2}{4\pi\varepsilon_0}\frac{1}{8\bar{z}_1^3} =
\frac{e^2}{32\pi\varepsilon_0}
\left(
\frac{16\pi\varepsilon_0m\omega^2_T}{e^2}
\right) = \frac{1}{2}m\omega_T^2
\end{equation*}
\end{itemize}
Combining the simplifications,
\begin{align}
\label{eq:atoms-harmonic-coupled}
H_{\substack{\text{small} \\ \text{oscill.}}} =
\frac{(p_1^z)^2+(p_2^z)^2}{2m}
+
\frac{m\omega_T^2}{2}
\left(
\hat{z}_1^{\prime\;2} + \hat{z}_2^{\prime\;2}
+ \left( \hat{z}_1'-\hat{z}_1' \right)^2
\right)
+ {O}\left( z_j^3 \right)
\end{align}
This Hamiltonian describes two coupled harmonic oscillators. One can define this new set of coordinates
\begin{equation}
\text{CoM}: \begin{dcases}
Z=\frac{z_1'+z_2'}{2}\\P=p_1^z+p_2^z
\end{dcases}
\qquad \qquad
\text{Relative}: \begin{dcases}
z=z_1-z_2\\p = \frac{p^z_1-p^z_2}{2}
\end{dcases}
\end{equation}
which inverts as
\begin{equation*}
\label{eq:inverted-coords-coupled}
p_{1,2}^z = \frac{P}{2}\pm p \qquad \qquad z'_{1,2} = Z\pm\frac{z}{2}
\end{equation*}
The terms of Equation \ref{eq:atoms-harmonic-coupled} can be written using the new coordinates
\begin{equation*}
(p_{1}^z)^2 + (p_{2}^z)^2 = \frac{P^2}{2} + 2p^2 \;,
\qquad
(z'_1)^2 + (z'_2)^2 = 2Z^2 + \frac{z^2}{2} \;,
\qquad \text{and} \qquad
(z'_1 - z'_2)^2 = z^2.
\end{equation*}
These coordinates are really convenient, because the new Hamiltonian is the sum of two decoupled problems:
\begin{equation}
\label{eq:twoatoms-harmonic-modes}
H_{\substack{\text{small} \\ \text{oscill.}}} =
\underbrace{\left[ \frac{P^2}{4m}+m\omega_T^2Z^2 \right]}
_{\text{CoM harmonic oscillator}}
+
\underbrace{\left[\frac{p^2}{m}+\frac{m\omega_T^2}{2}\left(\frac{3z^2}{2}\right)\right]}
_{\text{Stretch mode harmonic oscillator}}
+ \;\;{O}\left( z_j^3 \right)
\end{equation}
% define the dotted arrows
\def\bulletrightarrow{\hbox{$\bullet$}\kern-2pt\hbox{$\rightarrow$}}
\def\bulletleftarrow{\hbox{$\leftarrow$}\kern-2pt\hbox{$\bullet$}}
\noindent To solve this problem, one moves to the ladder operators formalism for each the two normal modes of the decoupled harmonic oscillators:
\begin{itemize}
\item \textbf{CoM mode}
$\qquad \left( \substack{
\bulletrightarrow \; \; \bulletrightarrow \\
\bulletleftarrow \; \; \bulletleftarrow } \right)$
\begin{align*}
\begin{dcases}
Z = \sqrt{\frac{\hbar}{4m\omega_T}}
\left( a_{CoM} + a_{CoM}^\dag \right)\\
P = i\sqrt{\hbar m\omega_T}
\left( a_{CoM}^\dag - a_{CoM} \right)
\end{dcases}
\;\;\Leftrightarrow\;\; a_{CoM} = \sqrt{\frac{m\omega_T}{\hbar}}\;Z+
i\sqrt{\frac{1}{4\hbar m\omega_T}}\;P
\end{align*}
\item \textbf{Stretch mode}
$\qquad \left( \substack{
\bulletrightarrow \; \; \bulletleftarrow \\
\bulletleftarrow \; \; \bulletrightarrow } \right)$
\begin{align*}
\begin{dcases}
z = \sqrt{\frac{\hbar}{\sqrt{3}m\omega_T}}
\left( a_{S} + a_{S}^\dag \right)\\
p = i\sqrt{\frac{\sqrt{3}\hbar m\omega_T}{4}}
\left( a_{S}^\dag - a_{S} \right)
\end{dcases}
\;\;\Leftrightarrow \;\;
a_{S} = \sqrt{\frac{\sqrt{3}m\omega_T}{4\hbar}}\;z+
i\sqrt{\frac{1}{\sqrt{3}\hbar m\omega_T}}\;p
\end{align*}
\end{itemize}
This leads to an utterly simplified form of equation (\ref{eq:twoatoms-harmonic-modes}):
\begin{align}
\label{eq:twoatoms-ladder-harmonic-modes}
H_{\substack{\text{small} \\ \text{oscill.}}} = \hbar\omega_T
\left( a_{CoM}^\dag a_{CoM} + \cancel{\frac{1}{2}} \right) +
\hbar\sqrt{3}\omega_T
\left( a_{S}^\dag a_{S} + \cancel{\frac{1}{2}} \right)
+ \cancel{\mathcal{O}\left( \dots \right)},
\end{align}
where the constant terms have been removed. We also see that the stretch mode is $\sqrt{3} \simeq 1.73$ times faster than $CoM$ mode, that is, several MHz away.
At the end of the day, one can recover the laboratory coordinates of the two atoms with $z_{1,2}=\pm\bar{z}_1+z'_{1,2} = \pm \bar{z}_1 + Z \pm \frac{z}{2}$,
\begin{equation}
\label{eq:lab-coords}
z_{1,2} =
\pm\bar{z}
+ \sqrt{\frac{\hbar}{4m\omega_T}}
\left( a_{CoM} + a_{CoM}^\dag \right)
\pm \sqrt{\frac{\hbar}{4\sqrt{3}m\omega_T}}
\left( a_S + a_S^\dag \right)
\end{equation}
and observe that their distance is orders of magnitude greater than the atom size. This means that the two atoms are sufficiently ``far away'', so one can suppose to be able to hit specifically one of them with a laser. Which is exactly what we will do!
%\begin{figure}[h!]
%\centering
% \includegraphics[width=0.3\linewidth]{img/sketch_far_atoms.png}
%\end{figure}
\subsection{Two trapped atoms under a focused laser}
\marginnote{From now on, we will shorten $CoM$ with $C$.}
Suppose to focus a laser, say, on ion 1 (of coordinate $z_1$). The Hamiltonian of such system would be composed by the one of equation (\ref{eq:twoatoms-ladder-harmonic-modes}), plus a dipole light-atom coupling term $H_{AL} = -\vec{d}\cdot\vec{E}(\vec{r})$:
\begin{equation}
H^{lab} =
\underbrace{
\hbar \omega_Ta_{C}^\dag a_{C}
+
\sqrt{3}\hbar\omega_Ta_S^\dag a_S
}_{\ref{eq:twoatoms-ladder-harmonic-modes}}
+ \hbar\Omega\sum_j\ket{e}\bra{e}_j + H_{AL}
\end{equation}
where
\begin{align*}
H_{AL} &= -\hbar\Omega\ket{e}\bra{g}_1
\cos\left(ckt-\cos\theta kz_1\right) + \text{h.c.}
\end{align*}
can be rewritten using equation (\ref{eq:lab-coords})
\begin{align*}
H_{AL} = -\hbar\Omega\ket{e}\bra{g}_1 \cos
\bigg(&
ckt -
\underbrace{\cos\theta k\bar{z}_1}_{\phi_0}
-\underbrace{\cos\theta k \sqrt{\frac{\hbar}{4m\omega_T}}}
_{\eta_{C}}
(a_{C}+a^\dag_{C}) + \\
&-\underbrace{\cos\theta k \sqrt{\frac{\hbar}{4\sqrt{3}m\omega_T}}}
_{\eta_{S}}
(a_{S}+a^\dag_{S})
\bigg)
+ \text{h.c.}
\end{align*}
Consider the rotating-wave approximation
$$|\omega_{eg}-\omega_L|,\Omega \;\ll\; \omega_{eg},\omega_L$$
and in the rotating frame, defined by the transformation
$U(t) = e^{-i\omega_L t\sum_j\ket{e}\bra{e}_j + i \phi_0}$. The Hamiltonian becomes
\begin{align*}
\begin{split}
H^{rot}_{RWA} =\; &
\hbar \overbrace{\left(\omega_{eg}-\omega_{L}\right)}
^{\equiv-\Delta}
\sum_j \ket{e}\bra{e}_j
+
\hbar \omega_{T}a_{C}^\dag a_{C}
+
\sqrt{3}\hbar\omega_Ta_S^\dag a_S
+\\
& -\frac{\hbar\Omega}{2}\ket{e}\bra{g}_1
e^{-i\eta_{C}(a+a^\dag)_{C}}
e^{-i\eta_{S}(a+a^\dag)_{S}}
+ \text{h.c.}
\end{split}
\end{align*}
Using the hypothesis that the $\eta$s are small parameters (Lamb-Dicke regime)
\begin{align*}
e^{-i\eta_{C}(a+a^\dag)_{C}}
e^{-i\eta_{S}(a+a^\dag)_{S}}
= 1
- i\eta_{C}(a_{C}+a_{C}^\dag)
- i\eta_{S}(a_{S}+a_{S}^\dag)
+ \mathcal{O}(\eta^2) \;\;,
\end{align*}
the final result is
\begin{align}
\begin{split}
H^{rot}_{RWA} =\; &
-\hbar\Delta
\sum_j \ket{e}\bra{e}_j
+
\hbar \omega_{T}a_{C}^\dag a_{C}
+
\sqrt{3}\hbar\omega_Ta_S^\dag a_S
+\\
& -\frac{\hbar\Omega}{2}\ket{e}\bra{g}_1
\left(
1 - i\eta_{C}(a_{C}+a_{C}^\dag)
- i\eta_{S}(a_{S}+a_{S}^\dag)
+{O}(\eta^2)
\right)
+ \text{h.c.}
\end{split}
\end{align}
From an experimental point of view, it would be possible to tune the laser to a specific sideband of a specific mode. Consider, for instance, the red sideband of CoM mode reported in the following figure:
\begin{center}
\input{img/trapped-sketch-levs.tex}
\end{center}
The detuning is sufficiently large to make it possible and the stretch mode will not be excited. Indeed, if
\begin{align*}
\text{KHz} \approx |\Delta + \omega_T| \ll \omega_T \approx \text{MHz}
\end{align*}
but
\begin{align*}
|\Delta\pm\sqrt{3}\omega_T| & \approx | -\omega_T \pm \sqrt{3}\omega_T| \approx\\
& \approx |\sqrt{3}\pm1|\omega_T \;
\underbrace{\;> 0.7 \cdot \omega_T \;\approx \text{MHz}}_{ \mathclap{\text{far detuned ($\Rightarrow$ no excitation of stretch mode)}} }
\end{align*}
\noindent The Hamiltonian would be a center-of-mass (axial) phonon Jaynes-Cummings model:
\begin{align}
\begin{split}
H_{red} = & -\hbar(\omega_T +\varepsilon)
\ket{e}\bra{e}_1
\;+\;
\hbar \omega_{T}a_{C}^\dag a_{C}
\;+ \\
& +\frac{\hbar\eta_{C}\Omega}{2}
\left( i\sigma_1^+a_{C} - i\sigma_1^-a_{C} \right)
\;\; + \text{decoupled stuff}
\end{split}
\end{align}
having defined $|\omega_L-\omega_{eg}+\omega_T| = \varepsilon \ll \omega_T$.
\vspace{1cm}
\begin{tcolorbox}[breakable, enhanced]
\textbf{Summary}\\
Let us briefly recap the take-away message of this section. We have considered two atoms in a trap with two focused laser beams. We have found that the dynamics of the system is described by two modes.
\begin{equation*}
\text{construction}\;\; \left( \substack{
\bulletrightarrow \; \; \bulletrightarrow \\
\bulletleftarrow \; \; \bulletleftarrow } \right)
\qquad\qquad
\text{destruction}\;\;
\left( \substack{
\bulletrightarrow \; \; \bulletleftarrow \\
\bulletleftarrow \; \; \bulletrightarrow } \right)
\end{equation*}
which create a phonon structure, like the one seen in previous paragraphs, but separable on each mode:
\begin{center}
\input{img/trapped-sketch-levs.tex}
\end{center}
\end{tcolorbox}
\vspace{1cm}
\section{Example: Cirac-Zoller CNOT gate}
We want to build a CNOT gate for two qubits. This step is fundamental to get a universal set of operations.\\
\noindent \textbf{Ingredients}:
\begin{itemize}
\item $2 \times$ 3-level $\{\ket{g}, \ket{e}, \ket{a}\}$ trapped ions (ex: $Ca^+$), where the auxiliary state $\ket{a}$ is not an allowed input.
\item $2 \times$ focused lasers $L1, L2$ which can be rapidly turned on/off.
\item $1 \times$ harmonic ion trap.
\end{itemize}
\begin{center}
\input{img/cirac-zoller-example.tex}
\end{center}
We have seen previously that we need a very good cooling strategy too, since we need $CoM$ phonons at $T\sim0$.
\textbf{Remark}: When a laser is perfectly resonant to a transition, I can go to an interaction picture via a suitable frame change $\tilde{U}$ on the hamiltonian $H$. If
\begin{equation*}
H = \begin{pmatrix}
\ddots\\
& \varepsilon_1\\
&&\varepsilon_2&\Omega\\
&&\Omega& \varepsilon_2\\
&&&&\varepsilon_3\\
&&&&&\ddots\\
\end{pmatrix},
\;\;
\tilde{U} = \begin{pmatrix}
\ddots\\
& e^{i\varepsilon_1t}\\
&& e^{i\varepsilon_2t}\\
&&& e^{i\varepsilon_2t}\\
&&&& e^{i\varepsilon_3t}\\
&&&&&\ddots\\
\end{pmatrix}
\end{equation*}
we obtain in the interaction picture as $H_{int} = \tilde{U}H\tilde{U} + i\hbar \dot{\tilde{U}}\tilde{U}^\dag$, i.e.
\begin{equation*}
H_{int} = \begin{pmatrix}
0\\
& 0\\
&& 0 & \Omega\\
&& \Omega & 0\\
&&&& 0\\
&&&&&0\\
\end{pmatrix}
\end{equation*}
$\Rightarrow$ it is convenient to go to the interaction picture in order to perform calculations, as the bare hamiltonian goes away.
\subsection{Protocol}
The lasers are tuned in the following way:
\begin{itemize}
\item Laser 1 ($L1$) is focused on ion 1, in resonance to $\ket{g}_1 \leftrightarrow \ket{e}_1$ through a red-sideband transition\\
$$H_{L1} = \frac{\hbar\eta_C\Omega_1(t)}{2}
\left( i\ket{e}\bra{g}_1 a_C + h.c. \right)$$
$$\omega_{L1} \approx \omega_{eg} -\omega_T$$
\item Laser 2 ($L2$) is focused on ion 2, in resonance to $\ket{g}_2 \leftrightarrow \ket{a}_2$ through a red-sideband transition\\
$$H_{L2} = \frac{\hbar\eta_C\Omega_2(t)}{2}
\left( i\ket{a}\bra{g}_2a_C + h.c. \right)$$
$$\omega_{L2} \approx \omega_{ag} -\omega_T$$
\end{itemize}
\noindent In principle the lasers may show some transient when turned on/off. For this protocol one can take the frequency evolution to be similar to a square function (the laser turns on/off immediately). The protocol consists of the following steps:
\begin{itemize}
% STEP 1
\item \textbf{Step 1} - Laser 2 off, Laser 1 on for $t_1 = \frac{\pi}{\eta_C\Omega_1}$. We call this a $\pi$-PULSE.
The unitary operator associated to this operation is
\begin{align*}
U_1 &= \exp{ -i\frac{\pi}{\eta_C\Omega_1} \frac{1}{\hbar} H_1 }\\% -i or -1 ??? TODO
& = \exp{ \frac{ -i \pi}{2}
\left( i \ket{e}\bra{g}_1a_C - i \ket{g}\bra{e}_1a^\dag_C \right)
}
\end{align*}
and it acts basically as $\sigma_y$ on the states $\ket{g_1, 1}$ and $\ket{e_1, 0}$.
Indeed, because of
$e^{i\alpha\sigma_k} = \cos\alpha \mathds{1} + i \sin\alpha \sigma_k$,
it is $e^{-i\pi\sigma_y/2} = -i \sigma_y$.
In general, the result of the operation is
\begin{align*}
\ket{g_1,0} & \overset{U_1}{\longrightarrow} \;\;\; \ket{g_1, 0}\\
\ket{e_1, 0} & \longrightarrow
\;\;\; i\left(\ket{e}\bra{g}_1a - \ket{g}\bra{e}_1a^\dag\right)\ket{e_1, 0} = -i \ket{g_1, 1}
\end{align*}
which is graphically represented as
\begin{center}
\input{img/cirac-zoller-step1.tex}
\end{center}
\item \textbf{Step 2} - Laser 1 off, Laser 2 on for $t_2 = \frac{2\pi}{\eta_C\Omega_2}$. We call this a $2\pi$-PULSE.
The unitary transformation is
\begin{align*}
\Rightarrow U_2 &= \exp{ -\frac{i}{\hbar}\frac{2\pi}{\eta_C\Omega_2} H_2 }\\
& = \exp{ -i\pi \left(
i\ket{a}\bra{g}_2a_C -
i\ket{g}\bra{a}_2a_C^\dag
\right)
}
\end{align*}
The expression acts like $-\mathds{1}$ on the states $\ket{g_2,1}, \ket{a_2, 0}$. Given the possible starting states
\begin{align*}
\ket{g_2,0} & \overset{U_2}{\longrightarrow} \;\;\; \ket{g_2, 0}\\
\ket{e_2, 0} & \longrightarrow \;\;\; \ket{e_2, 0}\\
\ket{g_2, 1} & \longrightarrow - \ket{g_2, 1}
\end{align*}
\begin{center}
\input{img/cirac-zoller-step2.tex}
\end{center}
\item \textbf{Step 3} - Identical to \textit{Step 1}.
$$\Rightarrow U_3 = U_1$$
In particular, $U_3\;i\ket{g_1, 1} = + \ket{e_1,0}$.
\end{itemize}
\noindent \textbf{Table of canonical states} - If we consider all the 4 possible inputs, then
\begin{align*}
\text{Inputs:}\;\;&
\begin{cases}
\ket{ g_1, g_2, 0} \\[1pt]
\ket{ g_1, e_2, 0} \\[1pt]
\ket{ e_1, g_2, 0} \\[1pt]
\ket{ e_1, e_2, 0}
\end{cases}
\;\; \xrightarrow[L1\;\;\pi]{U_1} \;\;
\begin{aligned}
\ket{ g_1, g_2, 0} \\[1pt]
\ket{ g_1, e_2, 0} \\[1pt]
- i\ket{ g_1, g_2, 1} \\[1pt]
- i\ket{ g_1, e_2, 1}
\end{aligned}
\;\; \xrightarrow[L2\;\;2\pi]{U_2} \\
& \xrightarrow{U_2} \;\;
\begin{aligned}
\ket{ g_1, g_2, 0} \\[1pt]
\ket{ g_1, e_2, 0} \\[1pt]
+ i\ket{ g_1, g_2, 1} \\[1pt]
- i\ket{ g_1, e_2, 1}
\end{aligned}
\;\; \xrightarrow[L1\;\;\pi]{U_3=U_1} \qquad
\text{Outputs:}
\begin{cases}
\ket{ g_1, g_2, 0} \\[1pt]
\ket{ g_1, e_2, 0} \\[1pt]
\ket{ e_1, g_2, 0} \\[1pt]
- \ket{ e_1, e_2, 0}
\end{cases}
\end{align*}
This operation goes from states with zero phonons to other states with zero phonons, but with a switched sign in the fourth input state. Therefore, the protocol acts as a \textbf{control-flip} gate on the second ion (qubit):
\begin{equation*}
G_{CZ} = U_1 U_2 U_1 = \begin{pmatrix}
1\\
&1\\
&&1\\
&&&-1
\end{pmatrix}
= \begin{quantikz}
& \ctrl{1} &\qw \\
& \gate{Z} &\qw \\
\end{quantikz}
\end{equation*}
from which one can build the CNOT gate as
\begin{center}
$CNOT =\;$
\begin{quantikz}
& \ctrl{1} &\qw \\
& \targ{} &\qw \\
\end{quantikz}
$\;\;=\;\;$
\begin{quantikz}
&\qw & \ctrl{1} & \qw &\qw \\
&\gate{H} & \gate{Z} & \gate{H} &\qw \\
\end{quantikz}
\end{center}
\noindent Being able to create such gate is a fundamental requirement to perform universal quantum computing operations.\\
\noindent \textbf{Note}: The most strict requirement of this protocol is to approach the limit $T=0$ (zero temperature phonon $\sim \mu K$). Some year after Cirac-Zoller\footnote{\href{https://doi.org/10.1103/PhysRevLett.74.4091}{Phys. Rev. Lett. 74, 4091 (1995)} - This is generalized for $N$ ions.} design of a CNOT gate, Klaus Mølmer and Anders Sørensen proposed a solution\footnote{\href{https://doi.org/10.1103/PhysRevLett.82.1971}{Phys. Rev. Lett. 82, 1971 (1999)}} which addressed the strict requirement of the temperature.