-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmqm2019poster.tex
345 lines (268 loc) · 11.5 KB
/
mqm2019poster.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
% !TeX document-id = {e06c1009-e01a-4844-9da1-2c8789db7fce}
% !TeX program = lualatex
% !TeX TXS-program:bibliography = txs:///biber
\documentclass[final, xcolor={svgnames}]{beamer}
% ====================
% Packages
% ====================
% Font, theme, and Beamerposter
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage[orientation=portrait, size=a0, scale=1.1]{beamerposter}
\usetheme{BCHCambridge}
\usecolortheme{BCHCambridge}
\newcommand\bmmax{2}
\usepackage{bm}
% Chemistry
\usepackage[version=4]{mhchem} % Further chemistry typesetting support
% Scientific typesetting
\usepackage{siunitx}
\AtBeginDocument{\sisetup{math-rm=\mathrm, text-rm=\rmfamily}}
% Micro-typography
\usepackage[
activate={true,nocompatibility},%
final,%
tracking=true,%
factor=1100,%
stretch=10,%
shrink=10%
]{microtype}
\SetTracking{encoding={*}, shape=sc}{40} % Reduce spacing between sc characters
\microtypecontext{spacing=nonfrench}
% Maths support
\usepackage{amsmath, amssymb, mathtools, mathrsfs, braket, amsthm} % packages for further maths support
\usepackage{mleftright} %loading package for ensuring correct spacing before brackets
\mleftright
% Bibliography
\usepackage[%
sorting=none,%
style=nature,%
articletitle=false,%
autocite=superscript,%
dateabbrev=false,%
url=false,%
isbn=false,%
backend=biber%
]{biblatex}
\addbibresource{bib/mqm2019poster.bib}
% Tables
\usepackage{booktabs, multirow, tabularx}
\usepackage{lscape}
% Cross-referencing
\usepackage[capitalise, noabbrev]{cleveref} %loading package for enhanced cross-referencing; cleverref must be loaded after hyperref
% Diagrams and captions
\usepackage{graphicx}
\usepackage{caption, subcaption}
% pgfplots
%% We need the external library to use the \tikzsetexternalprefix variable
%% in all cases. However, we only need version compatibility and the rest of
%% the libraries if we actually need to compile pikz diagrams.
\usepackage{pgfplots} % pgfplots loads tikz automatically
\usetikzlibrary{external}
\tikzexternalize
\newif\iftikzex
\tikzextrue
%\tikzexfalse
\iftikzex
\pgfplotsset{compat=1.16}
\usetikzlibrary{calc, luamath, positioning, pgfplots.groupplots}
\pgfplotscreateplotcyclelist{coloronly}{%
{red},%
{Blue},%
{black!60!green},%
{black!20!orange},%
{green!30!brown},%
{Blue!40!red},%
{black!60!Blue},%
{black!40!yellow},%
{red!50!pink},%
{green!70!Blue},%
}
\fi
% Tikzexternalize
\makeatletter
\newcommand*{\useexternalfile}[1]{%
\iftikzex
\tikzsetnextfilename{tikzoutput/#1-output}%
\scalebox{1}{\input{\tikzexternal@filenameprefix#1.tikz}}
\else
\includegraphics[scale=1]{\tikzexternal@filenameprefix tikzoutput/#1-output.pdf}
\fi
}
\makeatother
\tikzsetexternalprefix{./tikz/}
% ====================
% Lengths
% ====================
% If you have N columns, choose \sepwidth and \colwidth such that
% (N+1)*\sepwidth + N*\colwidth = \paperwidth
\newlength{\sepwidth}
\newlength{\colwidth}
\setlength{\sepwidth}{0.0275\paperwidth}
\setlength{\colwidth}{0.45875\paperwidth}
\newcommand{\separatorcolumn}{\begin{column}{\sepwidth}\end{column}}
% ====================
% Title
% ====================
\title{Exploiting Multiple Symmetry-Broken SCF Solutions\\ to Describe Ground and Excited States of\\ Transition-Metal Complexes}
\author{Bang C. Huynh\inst{1} \and Alex J. W. Thom\inst{1}}
\institute[Chemistry, Cambridge, UK]{\inst{1} Department of Chemistry, University of Cambridge, United Kingdom}
% ====================
% Body
% ====================
\begin{document}
\begin{frame}[t]
\begin{columns}[t]
\separatorcolumn
\begin{column}{\dimexpr(2\colwidth+\sepwidth)}
\begin{alertblock}{Low-Lying UHF Solutions and NOCI Wavefunctions of Model Octahedral \ce{[VF6]^{3-}}}
\begin{figure}
\begin{subfigure}[t]{0.49\textwidth}
\centering
\useexternalfile{d2_MS1_allnoci}
\end{subfigure}
\hfill
\begin{subfigure}[t]{0.49\textwidth}
\centering
\useexternalfile{d2_MS0_allnoci}
\end{subfigure}
\captionsetup{justification=centering}
\caption{
Energy and symmetry of low-lying UHF solutions and NOCI wavefunctions constructed from them in octahedral \ce{[VF6]^3-}.\\[6pt]
\footnotesize \tikz[baseline]{\node[draw, Gray!60!Black, inner sep = 3pt, anchor = base] {$\mathrm{S}_{M_S}$};}: symmetry-conserved UHF set $\mathrm{S}$ with $\hat{S}_z$ eigenvalue $M_S$. \tikz[baseline]{\node[draw, Gray!60!Black, densely dotted, inner sep = 3pt, anchor = base] {$\mathrm{S}_{M_S}$};}: spatial or spin symmetry-broken UHF set $\mathrm{S}$ with $\hat{S}_z$ eigenvalue $M_S$.\\[6pt]
\footnotesize $\Gamma[\mathrm{A}\oplus\mathrm{B}\oplus\mathrm{C}]$: a specific NOCI set of symmetry $\Gamma$ constructed from all of $\mathrm{A}$, $\mathrm{B}$, and $\mathrm{C}$. $\Gamma[\mathrm{A}, \mathrm{B}, \mathrm{C}]$: multiple NOCI sets of symmetry $\Gamma$ constructed from all non-trivial combinations of $\mathrm{A}$, $\mathrm{B}$, and $\mathrm{C}$.
}
\label{fig:d2_allnoci}
\end{figure}
\end{alertblock}
\end{column}
\separatorcolumn
\end{columns}
\begin{columns}[t]
\separatorcolumn
\begin{column}{\colwidth}
\begin{block}{Introduction}
Transition-metal complexes are \textbf{\color{Blue} strongly correlated} as they have many low-energy electronic states that exhibit \textbf{\color{Blue} high degrees of degeneracy}. \Cref{fig:corrTSd2} gives such states for octahedral $d^2$ as an example.
\begin{figure}
\begin{subfigure}[b]{0.49\textwidth}
\centering
\useexternalfile{corrd2}
\caption{Correlation diagram (not to scale)}
\end{subfigure}
\hfill
\begin{subfigure}[b]{0.49\textwidth}
\centering
\useexternalfile{TSd2}
\caption{Tanabe--Sugano diagram}
\end{subfigure}
\caption{All electronic terms of a true $d^2$ system in an octahedral field.}
\label{fig:corrTSd2}
\end{figure}
The non-linear HF equations for these complexes therefore admit \textbf{\color{Blue} multiple low-lying solutions} that are \textbf{\color{Blue} degenerate} or \textbf{\color{Blue} nearly degenerate}.
We have located these solutions using \textbf{\color{Blue} SCF metadynamics} and investigated their \textbf{\color{red} symmetry properties} in a model octahedral $d^2$ system, \ce{[VF6]^{3-}} (\cref{fig:d2_allnoci}).
\end{block}
\begin{alertblock}{Symmetry Breaking in HF}
Degenerate eigenfunctions of the spinless Hamiltonian \emph{must} transform as a single irreducible representation (irrep) of the underlying point group $\mathcal{B}$, the spin rotation group $\mathsf{SU}(2)$, or the time reversal group $\mathcal{T}$.
HF wavefunctions do not have to obey this due to their approximate nature. Thus, consider a set of degenerate HF solutions %
$\mathrm{S} =
\left\lbrace
\prescript{w}{}{\Psi} %
\ | \ %
w = 1, 2, \ldots %
\right\rbrace%
$ %
and a particular group $\mathcal{G}$:
\begin{itemize}
\item if $\mathrm{S}$ spans a \textbf{\color{Blue} single irrep} in $\mathcal{G}$, then $\mathrm{S}$ is \textbf{\color{red} symmetry-conserved} in $\mathcal{G}$;
\item if $\mathrm{S}$ spans \textbf{\color{Blue} multiple
irreps} in $\mathcal{G}$, then $\mathrm{S}$ is \textbf{\color{red} symmetry-broken} in $\mathcal{G}$.
\end{itemize}
HF solutions break symmetry to become lower in energy and possibly recover some electron correlation. \textbf{\color{Blue} Restoring symmetry} of symmetry-broken HF solutions allows us to form \textbf{\color{red} physically meaningful wavefunctions} while \textbf{\color{red} incorporating said correlation}.
\end{alertblock}
\begin{block}{Restoring Symmetry: Non-Orthogonal CI (NOCI)}
For a complete symmetry-broken set %
$\mathrm{S} =
\left\lbrace
\prescript{w}{}{\Psi} %
\ | \ %
w = 1, 2, \ldots %
\right\rbrace%
$, %
solving the generalised eigenvalue equation
\begin{equation*}
\boldsymbol{HA} = \boldsymbol{SAE} \quad %
\textsf{where} \quad %
\left(\boldsymbol{H}\right)_{wx} = %
\braket{\prescript{w}{}{\Psi}|\hat{\mathscr{H}}|\prescript{x}{}{\Psi}} \ %
\textsf{and} \ %
\left(\boldsymbol{S}\right)_{wx} = %
\braket{\prescript{w}{}{\Psi}|\prescript{x}{}{\Psi}} %
\end{equation*}
gives coefficients $A_{wm}$ such that the \textbf{\color{Blue} NOCI wavefunctions}
\begin{equation*}
\prescript{m}{}{\Phi} = \sum_{w} \prescript{w}{}{\Psi} A_{wm}
\end{equation*}
\textbf{\color{red} conserve symmetry} and can be used to approximate corresponding electronic terms.
\end{block}
\end{column}
\separatorcolumn
\begin{column}{\colwidth}
\begin{block}{UHF vs. NOCI: Jahn--Teller Distortion}
Consider the $T_{1g} \otimes e_g$ Jahn--Teller distortion in octaheral \ce{[VF6]^{3-}}. \Cref{fig:JT} shows that:
\begin{itemize}
\item the UHF $\mathrm{A}_1$ and $\mathrm{A}'_1$ solutions fail to exhibit the expected energy minima;
\item the $\prescript{3}{}{T}_{1g}[\mathrm{A}_1 \oplus \mathrm{A}'_1]$ \textbf{\color{Blue} NOCI wavefunctions} do \textbf{\color{Red} show the expected stabilisation} and give the \textbf{\color{Red} correct degeneracy splitting} upon symmetry descent.
\end{itemize}
\begin{figure}
\centering
\useexternalfile{A.JT.Eg.minimal}
\captionsetup{justification=centering}
\caption{
State energy in the $T_{1g} \otimes e_g$ Jahn--Teller distortion of octahedral \ce{[VF6]^{3-}}.\\[6pt]
\footnotesize Dashed curves: symmetry-broken UHF $\mathrm{A}_1$ or $\mathrm{A}'_1$ solutions. Solid curves: $\prescript{3}{}{T}_{1g}[\mathrm{A}_1 \oplus \mathrm{A}'_1]$ NOCI wavefunctions.}
\label{fig:JT}
\end{figure}
\end{block}
\begin{block}{Solution Topology: Euclidean Realisation of State Distances}
% Interpreting state distances as Euclidean distances,
By realising the distance matrices between symmetry-broken HF solutions to give \textbf{\color{Blue} polytopes} showing their \textbf{\color{red} arrangements in Euclidean space} (\cref{fig:AAdashpolytopes}), we hope to gain insight into the nature of their symmetry breaking.
\begin{figure}
\begin{subfigure}[b]{0.3\textwidth}
\centering
\useexternalfile{AAdashpolytope.Egu.elongation.g8}
\caption{$S_2 = \SI{-0.04}{\angstrom}$}
\end{subfigure}
\hfill
\begin{subfigure}[b]{0.3\textwidth}
\centering
\useexternalfile{AAdashpolytope.Egu.compression.g0}
\caption{$S_2 = 0$}
\end{subfigure}
\hfill
\begin{subfigure}[b]{0.3\textwidth}
\centering
\useexternalfile{AAdashpolytope.Egu.compression.g8}
\caption{$S_2 = \SI{0.04}{\angstrom}$}
\end{subfigure}
\caption{Three-dimensional projections of polytopes of $\mathrm{A}_1$ and $\mathrm{A}'_1$ solutions along the $e_{g}u$ distortion.}
\label{fig:AAdashpolytopes}
\end{figure}
\end{block}
\begin{alertblock}{In a Nutshell}
\begin{itemize}
\item There exist \textbf{\color{DarkGreen} many low-lying HF solutions} in transition-metal complexes.
\item Some solutions \textbf{\color{DarkGreen} break symmetry}, spin or spatial or both.
\item NOCI can \textbf{\color{DarkGreen} restore symmetry} to give \textbf{\color{DarkGreen} proper physical behaviours}, \textit{e.g.}, vibronic coupling.
\item There are \textbf{\color{DarkGreen} clear patterns} in symmetry breaking that need further understanding.
\end{itemize}
\end{alertblock}
\begin{block}{References}
\AtNextBibliography{\footnotesize}
\nocite{*}
\printbibliography[title=none]
\end{block}
\end{column}
\separatorcolumn
\end{columns}
\end{frame}
\end{document}