forked from eriklindernoren/Keras-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdualgan.py
226 lines (171 loc) · 7.83 KB
/
dualgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from __future__ import print_function, division
import scipy
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, Concatenate
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import RMSprop, Adam
from keras.utils import to_categorical
import keras.backend as K
import matplotlib.pyplot as plt
import sys
import numpy as np
class DUALGAN():
def __init__(self):
self.img_rows = 28
self.img_cols = 28
self.channels = 1
self.img_dim = self.img_rows*self.img_cols
optimizer = Adam(0.0002, 0.5)
# Build and compile the discriminators
self.d1 = self.build_discriminator()
self.d1.compile(loss=self.wasserstein_loss,
optimizer=optimizer,
metrics=['accuracy'])
self.d2 = self.build_discriminator()
self.d2.compile(loss=self.wasserstein_loss,
optimizer=optimizer,
metrics=['accuracy'])
# Build and compile the generators
self.g1 = self.build_generator()
self.g1.compile(loss='binary_crossentropy', optimizer=optimizer)
self.g2 = self.build_generator()
self.g2.compile(loss='binary_crossentropy', optimizer=optimizer)
# For the combined model we will only train the generator
self.d1.trainable = False
self.d2.trainable = False
# The generator takes images from their respective domains as inputs
X1 = Input(shape=(self.img_dim,))
X2 = Input(shape=(self.img_dim,))
# Generators translates the images to the opposite domain
X1_translated = self.g1(X1)
X2_translated = self.g2(X2)
# The discriminators determines validity of translated images
valid1 = self.d1(X2_translated)
valid2 = self.d2(X1_translated)
# Generators translate the images back to their original domain
X1_recon = self.g2(X1_translated)
X2_recon = self.g1(X2_translated)
# The combined model (stacked generators and discriminators)
self.combined = Model([X1, X2], [valid1, valid2, X1_recon, X2_recon])
self.combined.compile(loss=[self.wasserstein_loss, self.wasserstein_loss, 'mae', 'mae'],
optimizer=optimizer,
loss_weights=[1, 1, 100, 100])
def build_generator(self):
X = Input(shape=(self.img_dim,))
model = Sequential()
model.add(Dense(256, input_dim=self.img_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dropout(0.4))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dropout(0.4))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dropout(0.4))
model.add(Dense(np.prod(self.img_shape), activation='tanh'))
X_translated = model(X)
return Model(X, X_translated)
def build_discriminator(self):
img = Input(shape=(self.img_dim,))
model = Sequential()
model.add(Dense(512, input_dim=self.img_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(self.channels))
validity = model(img)
return Model(img, validity)
def sample_generator_input(self, X, batch_size):
# Sample random batch of images from X
idx = np.random.randint(0, X.shape[0], batch_size)
return X[idx]
def wasserstein_loss(self, y_true, y_pred):
return K.mean(y_true * y_pred)
def train(self, epochs, batch_size=128, save_interval=50):
# Load the dataset
(X_train, _), (_, _) = mnist.load_data()
# Rescale -1 to 1
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
# Domain A and B (rotated)
X1 = X_train[:int(X_train.shape[0]/2)]
X2 = scipy.ndimage.interpolation.rotate(X_train[int(X_train.shape[0]/2):], 90, axes=(1, 2))
X1 = X1.reshape(X1.shape[0], self.img_dim)
X2 = X2.reshape(X2.shape[0], self.img_dim)
clip_value = 0.1
n_critic = 4
half_batch = int(batch_size / 2)
for epoch in range(epochs):
# Train the discriminator for n_critic iterations
for _ in range(n_critic):
# ----------------------
# Train Discriminators
# ----------------------
# Sample generator inputs
imgs1 = self.sample_generator_input(X1, half_batch)
imgs2 = self.sample_generator_input(X2, half_batch)
# Translate images to their opposite domain
X1_translated = self.g1.predict(imgs1)
X2_translated = self.g2.predict(imgs2)
valid = np.ones((half_batch, 1))
fake = np.zeros((half_batch, 1))
# Train the discriminators
d1_loss_real = self.d1.train_on_batch(imgs1, valid)
d1_loss_fake = self.d1.train_on_batch(X2_translated, fake)
d2_loss_real = self.d2.train_on_batch(imgs2, valid)
d2_loss_fake = self.d2.train_on_batch(X1_translated, fake)
d1_loss = 0.5 * np.add(d1_loss_real, d1_loss_fake)
d2_loss = 0.5 * np.add(d2_loss_real, d2_loss_fake)
# Clip discriminator weights
for d in [self.d1, self.d2]:
for l in d.layers:
weights = l.get_weights()
weights = [np.clip(w, -clip_value, clip_value) for w in weights]
l.set_weights(weights)
# ------------------
# Train Generators
# ------------------
# Sample generator inputs from each domain
imgs1 = self.sample_generator_input(X1, batch_size)
imgs2 = self.sample_generator_input(X2, batch_size)
# The generators wants the discriminators to label the generated samples
# as valid (ones)
valid = np.ones((batch_size, 1))
# Train the generators
g_loss = self.combined.train_on_batch([imgs1, imgs2], [valid, valid, imgs1, imgs2])
# Plot the progress
print ("%d [D1 loss: %f, acc.: %.2f%%] [D2 loss: %f, acc.: %.2f%%] [G loss: %f]" \
% (epoch, d1_loss[0], 100*d1_loss[1], d2_loss[0], 100*d2_loss[1], g_loss[0]))
# If at save interval => save generated image samples
if epoch % save_interval == 0:
self.save_imgs(epoch, X1)
def save_imgs(self, epoch, X):
r, c = 3, 4
# Original images
imgs = self.sample_generator_input(X, c)
# Images translated to their opposite domain
X_translated = self.g1.predict(imgs)
# Images translated back to their original domain
X_recon = self.g2.predict(X_translated)
gen_imgs = np.concatenate([imgs, X_translated, X_recon])
gen_imgs = gen_imgs.reshape((3, 4, self.img_rows, self.img_cols, 1))
# Rescale images 0 - 1
gen_imgs = 0.5 * gen_imgs + 0.5
fig, axs = plt.subplots(r, c)
cnt = 0
for i in range(r):
for j in range(c):
axs[i,j].imshow(gen_imgs[i, j, :,:,0], cmap='gray')
axs[i,j].axis('off')
cnt += 1
fig.savefig("dualgan/images/mnist_%d.png" % epoch)
plt.close()
if __name__ == '__main__':
gan = DUALGAN()
gan.train(epochs=30000, batch_size=32, save_interval=200)