-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
111 lines (93 loc) · 3.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import logging
import os
import warnings
from pathlib import Path
import torch
import torch.distributed as dist
from omegaconf import OmegaConf
from torch.utils.data import DataLoader
from xt.config import MainConfig, create_config
from xt.datasets import build_loader
from xt.evaluator import build_evaluator
from xt.trainer import PytorchTrainer
from xt.utils import get_rank, get_world_size, is_main_process
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["LOGLEVEL"] = "WARNING"
logging.basicConfig(level=os.environ.get("LOGLEVEL", "INFO").upper())
torch.utils.data._utils.MP_STATUS_CHECK_INTERVAL = 120
warnings.filterwarnings("ignore")
def main(cfg: MainConfig = None, args=None) -> None:
if os.environ.get("RANK", "0") == "0":
_make_output_directory_structure(cfg)
process_group = _init_distributed(cfg)
cfg.name = getattr(args, "name", cfg.name)
train_data, val_data, train_loader, val_loader, mixup_fn = build_loader(
cfg.data, cfg.test
)
seg_evaluator = build_evaluator(cfg)
trainer = PytorchTrainer(
config=cfg,
evaluator=seg_evaluator,
train_loader=train_loader,
val_loader=val_loader,
mixup_fn=mixup_fn,
process_group=process_group,
)
cfg = trainer.config # Sync configuration with trainer updates
if is_main_process():
os.makedirs(os.path.join(cfg.output_dir, cfg.name), exist_ok=True)
print(OmegaConf.to_yaml(cfg))
if hasattr(args, "summary") and args.summary:
return
if cfg.test:
sampler = torch.utils.data.distributed.DistributedSampler(
val_data,
shuffle=False,
num_replicas=get_world_size(),
rank=get_rank(),
)
test_loader = DataLoader(
val_data,
batch_size=1,
sampler=sampler,
shuffle=False,
num_workers=0,
pin_memory=False,
)
trainer.validate(test_loader)
return
if cfg.val:
trainer.validate()
return
trainer.fit()
def _init_distributed(config):
if config.distributed:
pg = dist.init_process_group(
backend="nccl",
# rank=self.config.local_rank, set to torchrun
# world_size=self.config.world_size,
)
if get_rank() == 0:
print(f"Setting rank. Rank is {get_rank()}")
print(
f"There are {torch.cuda.device_count()} GPUs: {[torch.cuda.get_device_properties(i) for i in range(torch.cuda.device_count())]}"
)
torch.cuda.set_device(get_rank())
else:
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"] = self.config.gpu
return pg
def _make_output_directory_structure(cfg):
print("Making directories...")
print(f"Making {cfg.output_dir}")
output_dir = Path(cfg.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
(output_dir / "checkpoints").mkdir(exist_ok=True)
(output_dir / "predictions").mkdir(exist_ok=True)
if __name__ == "__main__":
args = OmegaConf.from_cli() # first grab from cli to determine config
schema = OmegaConf.structured(MainConfig)
config = create_config(schema, args.config)
main(config, args)