-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
eeae6e1
commit ec62f8b
Showing
5 changed files
with
128 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
Requirements: | ||
* 16GB HDD (should be ~14GB) | ||
* 24GB GPU vRAM |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
import argparse | ||
import contextlib | ||
import io | ||
import pathlib | ||
import sys | ||
import time | ||
from pprint import pprint | ||
|
||
import torch | ||
import vllm | ||
import yaml | ||
from deterministic_ml.v1 import set_deterministic | ||
from vllm import SamplingParams | ||
|
||
SEED = 42 | ||
|
||
set_deterministic(SEED) | ||
|
||
|
||
@contextlib.contextmanager | ||
def timed(name): | ||
print(f"Starting {name}") | ||
start = time.time() | ||
yield | ||
took = time.time() - start | ||
print(f"{name} took {took:.2f} seconds") | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("output_path", type=pathlib.Path, help="Path to save the output") | ||
parser.add_argument( | ||
"--model", | ||
default="microsoft/Phi-3.5-mini-instruct@cd6881a82d62252f5a84593c61acf290f15d89e3", | ||
help="Model name", | ||
) | ||
args = parser.parse_args() | ||
|
||
gpu_count = torch.cuda.device_count() | ||
|
||
model_name = args.model | ||
if "@" in model_name: | ||
model_name, revision = model_name.split("@") | ||
else: | ||
revision = None | ||
|
||
with timed("model loading"): | ||
model = vllm.LLM( | ||
model=model_name, | ||
revision=revision, | ||
# quantization="AWQ", | ||
tensor_parallel_size=gpu_count, | ||
# quantization="AWQ", # Ensure quantization is set if needed | ||
# tensor_parallel_size=1, # Set according to the number of GPUs available | ||
max_model_len=6144, | ||
enforce_eager=True, # Ensure eager mode is enabled | ||
) | ||
|
||
def make_prompt(prompt): | ||
role_templates = { | ||
"system": "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n{{{{ {} }}}}<|eot_id|>", | ||
"user": "<|start_header_id|>user<|end_header_id|>\n{{{{ {} }}}}<|eot_id|>", | ||
"assistant": "<|start_header_id|>assistant<|end_header_id|>\n{{{{ {} }}}}<|eot_id|>", | ||
"end": "<|start_header_id|>assistant<|end_header_id|>", | ||
} | ||
msgs = [ | ||
{"role": "system", "content": "You are a helpful AI assistant"}, | ||
{"role": "user", "content": prompt}, | ||
] | ||
full_prompt = io.StringIO() | ||
for msg in msgs: | ||
full_prompt.write(role_templates[msg["role"]].format(msg["content"])) | ||
full_prompt.write(role_templates["end"]) | ||
return full_prompt.getvalue() | ||
|
||
sampling_params = SamplingParams( | ||
max_tokens=4096, | ||
temperature=0.5, | ||
top_p=0.95, | ||
seed=SEED, | ||
) | ||
|
||
def generate_responses(prompts: list[str]): | ||
requests = [make_prompt(prompt) for prompt in prompts] | ||
response = model.generate(requests, sampling_params, use_tqdm=True) | ||
return response | ||
|
||
import hashlib | ||
|
||
output_hashes = {} | ||
output_full = {} | ||
prompts = [ | ||
"Count to 1000, skip unpopular numbers", | ||
"Describe justice system in UK vs USA in 2000-5000 words", | ||
"Describe schooling system in UK vs USA in 2000-5000 words", | ||
"Explain me some random problem for me in 2000-5000 words", | ||
"Tell me entire history of USA", | ||
"Write a ballad. Pick a random theme.", | ||
"Write an epic story about a dragon and a knight", | ||
"Write an essay about being a Senior developer.", | ||
] | ||
|
||
with timed(f"{len(prompts)} responses generation"): | ||
for prompt, r in zip(prompts, generate_responses(prompts)): | ||
hasher = hashlib.blake2b() | ||
text_response = r.outputs[0].text | ||
output_full[prompt] = text_response | ||
hasher.update(text_response.encode("utf8")) | ||
output_hashes[prompt] = hasher.hexdigest() | ||
sys.stderr.flush() | ||
|
||
pprint(output_hashes) | ||
with open(args.output_path / "output.yaml", "w") as f: | ||
yaml.safe_dump(output_hashes, f, sort_keys=True) | ||
|
||
with open(args.output_path / "output_full.yaml", "w") as f: | ||
yaml.safe_dump(output_full, f, sort_keys=True) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
setuptools | ||
torch | ||
pyyaml | ||
vllm |