Skip to content

Commit

Permalink
reference experiment results
Browse files Browse the repository at this point in the history
  • Loading branch information
mjurbanski-reef committed Aug 23, 2024
1 parent 1f55366 commit 832e55b
Show file tree
Hide file tree
Showing 55 changed files with 6,744 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
comment: 1x A100 SXM4 80GB
experiment: vllm_llama_3_70b_instruct_awq
experiment_hash: exp_hash_v1:7aa490
run_id: vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb
slug: 1x_a100_sxm4_80gb
timestamp: 2024-08-22_12-16-19
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
Count to 1000, skip unpopular numbers: 5fa4c4a18a1534b96c2eb2c5a30f63da0237b338aebf745d27d3d73dbc8dedfa2aed7070799440ac37e8610f9dd4926371f77a98e79c50a2c8b5b583cbf7c86e
Describe justice system in UK vs USA in 2000-5000 words: 83c0ec6b7f37d53b798093724f72a40195572be308b65471e8d2aae18379ef79655233858eb842ebf73967b058c38685fbea9543a3d1b3b4f41684b5fd95eede
Describe schooling system in UK vs USA in 2000-5000 words: f5d13dd9ee6b6b0540bd3e4adf6baec37ff5d4dc3e1158344f5ab2c690880de0ac1263d3f2691d6b904271298ba0b023adf541ba2f7fb1add50ba27f7a67d3a1
Explain me some random problem for me in 2000-5000 words: 143fc78fb373d10e8b27bdc3bcd5a5a9b5154c8a9dfeb72102d610a87cf47d5cfeb7a4be0136bf0ba275e3fa46e8b6cfcbeb63af6c45714abcd2875bb7bd577c
Tell me entire history of USA: 210fa7578650d083ad35cae251f8ef272bdc61c35daa08eb27852b3ddc59262718300971b1ac9725c9ac08f63240a1a13845d6c853d2e08520567288d54b5518
Write a ballad. Pick a random theme.: 21c8744c38338c8e8c4a9f0efc580b9040d51837573924ef731180e7cc2fb21cb96968c901803abad6df1b4f035096ec0fc75339144f133c754a8303a3f378e3
Write an epic story about a dragon and a knight: 81ff9b82399502e2d3b0fd8f625d3c3f6141c4c179488a247c0c0cc3ccd77828f0920c3d8c03621dfe426e401f58820a6094db5f3786ab7f12bfb13d6224ef94
Write an essay about being a Senior developer.: 0921d5c3b2e04616dbb655e6ba4648911b9461a4ecdb0d435ebf190d903a92c20cf1343d98de65b6e9690f5e6b1c8f3bfc58e720168fa54dc0e293f0f595505c
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
2024-08-22 12:16:19,452 - __main__ - INFO - Starting experiment vllm_llama_3_70b_instruct_awq with comment: 1x A100 SXM4 80GB
2024-08-22 12:16:19,455 - __main__ - INFO - Local log file: /home/rooter/dev/bac/deterministic-ml/tests/integration/results/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb/run.local.log
2024-08-22 12:16:19,564 - paramiko.transport - INFO - Connected (version 2.0, client OpenSSH_8.9p1)
2024-08-22 12:16:19,769 - paramiko.transport - INFO - Auth banner: b'Welcome to vast.ai. If authentication fails, try again after a few seconds, and double check your ssh key.\nHave fun!\n'
2024-08-22 12:16:19,772 - paramiko.transport - INFO - Authentication (publickey) successful!
2024-08-22 12:16:19,774 - __main__ - INFO - Syncing files to remote
2024-08-22 12:16:19,961 - tools.ssh - INFO - Command: 'mkdir -p ~/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb/output' stdout: '' stderr: '' status_code: 0
2024-08-22 12:16:22,432 - __main__ - INFO - Setting up remote environment
2024-08-22 12:16:25,588 - tools.ssh - INFO - Command: '\n set -exo pipefail\n \n curl -LsSf https://astral.sh/uv/install.sh | sh\n export PATH=$HOME/.cargo/bin:$PATH\n \n cd ~/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb\n uv venv -p python3.11 --python-preference managed\n source .venv/bin/activate \n uv pip install ./deterministic_ml*.whl pyyaml -r vllm_llama_3_70b_instruct_awq/requirements.txt\n ' stdout: "installing to /root/.cargo/bin\n uv\n uvx\neverything's installed!\n" stderr: "+ curl -LsSf https://astral.sh/uv/install.sh\n+ sh\ndownloading uv 0.3.1 x86_64-unknown-linux-gnu\n+ export PATH=/root/.cargo/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin\n+ PATH=/root/.cargo/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin\n+ cd /root/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb\n+ uv venv -p python3.11 --python-preference managed\nUsing Python 3.11.9\nCreating virtualenv at: .venv\nActivate with: source .venv/bin/activate\n+ source .venv/bin/activate\n++ '[' -n x ']'\n++ SCRIPT_PATH=.venv/bin/activate\n++ '[' .venv/bin/activate = bash ']'\n++ deactivate nondestructive\n++ unset -f pydoc\n++ '[' -z '' ']'\n++ '[' -z '' ']'\n++ hash -r\n++ '[' -z '' ']'\n++ unset VIRTUAL_ENV\n++ unset VIRTUAL_ENV_PROMPT\n++ '[' '!' nondestructive = nondestructive ']'\n++ VIRTUAL_ENV=/root/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb/.venv\n++ '[' linux-gnu = cygwin ']'\n++ '[' linux-gnu = msys ']'\n++ export VIRTUAL_ENV\n++ _OLD_VIRTUAL_PATH=/root/.cargo/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin\n++ PATH=/root/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb/.venv/bin:/root/.cargo/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin\n++ export PATH\n++ '[' x2024-08-22_12-16-19_1x_a100_sxm4_80gb '!=' x ']'\n++ VIRTUAL_ENV_PROMPT=2024-08-22_12-16-19_1x_a100_sxm4_80gb\n++ export VIRTUAL_ENV_PROMPT\n++ '[' -z '' ']'\n++ '[' -z '' ']'\n++ _OLD_VIRTUAL_PS1=\n++ PS1='(2024-08-22_12-16-19_1x_a100_sxm4_80gb) '\n++ export PS1\n++ alias pydoc\n++ true\n++ hash -r\n+ uv pip install ./deterministic_ml-0.1.dev2+g218f083.d20240822-py3-none-any.whl pyyaml -r vllm_llama_3_70b_instruct_awq/requirements.txt\nResolved 108 packages in 57ms\nPrepared 1 package in 2ms\nInstalled 108 packages in 473ms\n + aiohappyeyeballs==2.4.0\n + aiohttp==3.10.5\n + aiosignal==1.3.1\n + annotated-types==0.7.0\n + anyio==4.4.0\n + attrs==24.2.0\n + certifi==2024.7.4\n + charset-normalizer==3.3.2\n + click==8.1.7\n + cloudpickle==3.0.0\n + cmake==3.30.2\n + datasets==2.21.0\n + deterministic-ml==0.1.dev2+g218f083.d20240822 (from file:///root/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb/deterministic_ml-0.1.dev2+g218f083.d20240822-py3-none-any.whl)\n + dill==0.3.8\n + diskcache==5.6.3\n + distro==1.9.0\n + fastapi==0.112.1\n + filelock==3.15.4\n + frozenlist==1.4.1\n + fsspec==2024.6.1\n + h11==0.14.0\n + httpcore==1.0.5\n + httptools==0.6.1\n + httpx==0.27.0\n + huggingface-hub==0.24.6\n + idna==3.7\n + interegular==0.3.3\n + jinja2==3.1.4\n + jiter==0.5.0\n + jsonschema==4.23.0\n + jsonschema-specifications==2023.12.1\n + lark==1.2.2\n + llvmlite==0.43.0\n + lm-format-enforcer==0.10.3\n + markupsafe==2.1.5\n + mpmath==1.3.0\n + msgpack==1.0.8\n + multidict==6.0.5\n + multiprocess==0.70.16\n + nest-asyncio==1.6.0\n + networkx==3.3\n + ninja==1.11.1.1\n + numba==0.60.0\n + numpy==1.26.4\n + nvidia-cublas-cu12==12.1.3.1\n + nvidia-cuda-cupti-cu12==12.1.105\n + nvidia-cuda-nvrtc-cu12==12.1.105\n + nvidia-cuda-runtime-cu12==12.1.105\n + nvidia-cudnn-cu12==9.1.0.70\n + nvidia-cufft-cu12==11.0.2.54\n + nvidia-curand-cu12==10.3.2.106\n + nvidia-cusolver-cu12==11.4.5.107\n + nvidia-cusparse-cu12==12.1.0.106\n + nvidia-ml-py==12.560.30\n + nvidia-nccl-cu12==2.20.5\n + nvidia-nvjitlink-cu12==12.6.20\n + nvidia-nvtx-cu12==12.1.105\n + openai==1.42.0\n + outlines==0.0.46\n + packaging==24.1\n + pandas==2.2.2\n + pillow==10.4.0\n + prometheus-client==0.20.0\n + prometheus-fastapi-instrumentator==7.0.0\n + protobuf==5.27.3\n + psutil==6.0.0\n + py-cpuinfo==9.0.0\n + pyairports==2.1.1\n + pyarrow==17.0.0\n + pycountry==24.6.1\n + pydantic==2.8.2\n + pydantic-core==2.20.1\n + python-dateutil==2.9.0.post0\n + python-dotenv==1.0.1\n + pytz==2024.1\n + pyyaml==6.0.2\n + pyzmq==26.2.0\n + ray==2.34.0\n + referencing==0.35.1\n + regex==2024.7.24\n + requests==2.32.3\n + rpds-py==0.20.0\n + safetensors==0.4.4\n + sentencepiece==0.2.0\n + setuptools==73.0.1\n + six==1.16.0\n + sniffio==1.3.1\n + starlette==0.38.2\n + sympy==1.13.2\n + tiktoken==0.7.0\n + tokenizers==0.19.1\n + torch==2.4.0\n + torchvision==0.19.0\n + tqdm==4.66.5\n + transformers==4.44.1\n + triton==3.0.0\n + typing-extensions==4.12.2\n + tzdata==2024.1\n + urllib3==2.2.2\n + uvicorn==0.30.6\n + uvloop==0.20.0\n + vllm==0.5.4\n + vllm-flash-attn==2.6.1\n + watchfiles==0.23.0\n + websockets==13.0\n + xformers==0.0.27.post2\n + xxhash==3.5.0\n + yarl==1.9.4\n" status_code: 0
2024-08-22 12:16:25,608 - __main__ - INFO - Gathering system info
2024-08-22 12:16:28,471 - tools.ssh - INFO - Command: '\n set -exo pipefail\n \n cd ~/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb\n export PATH=$HOME/.cargo/bin:$PATH\n source .venv/bin/activate;\n python -m deterministic_ml._internal.sysinfo > ~/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb/output/sysinfo.yaml' stdout: '' stderr: "+ cd /root/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb\n+ export PATH=/root/.cargo/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin\n+ PATH=/root/.cargo/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin\n+ source .venv/bin/activate\n++ '[' -n x ']'\n++ SCRIPT_PATH=.venv/bin/activate\n++ '[' .venv/bin/activate = bash ']'\n++ deactivate nondestructive\n++ unset -f pydoc\n++ '[' -z '' ']'\n++ '[' -z '' ']'\n++ hash -r\n++ '[' -z '' ']'\n++ unset VIRTUAL_ENV\n++ unset VIRTUAL_ENV_PROMPT\n++ '[' '!' nondestructive = nondestructive ']'\n++ VIRTUAL_ENV=/root/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb/.venv\n++ '[' linux-gnu = cygwin ']'\n++ '[' linux-gnu = msys ']'\n++ export VIRTUAL_ENV\n++ _OLD_VIRTUAL_PATH=/root/.cargo/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin\n++ PATH=/root/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb/.venv/bin:/root/.cargo/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin\n++ export PATH\n++ '[' x2024-08-22_12-16-19_1x_a100_sxm4_80gb '!=' x ']'\n++ VIRTUAL_ENV_PROMPT=2024-08-22_12-16-19_1x_a100_sxm4_80gb\n++ export VIRTUAL_ENV_PROMPT\n++ '[' -z '' ']'\n++ '[' -z '' ']'\n++ _OLD_VIRTUAL_PS1=\n++ PS1='(2024-08-22_12-16-19_1x_a100_sxm4_80gb) '\n++ export PS1\n++ alias pydoc\n++ true\n++ hash -r\n+ python -m deterministic_ml._internal.sysinfo\n" status_code: 0
2024-08-22 12:16:28,485 - __main__ - INFO - Running experiment code on remote
2024-08-22 12:20:56,768 - tools.ssh - INFO - Command: '\n set -exo pipefail\n \n cd ~/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb\n export PATH=$HOME/.cargo/bin:$PATH\n source .venv/bin/activate;\n python -m vllm_llama_3_70b_instruct_awq ~/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb/output | tee ~/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb/output/stdout.txt' stdout: "gpu_count=1\nStarting model loading\nINFO 08-22 10:16:34 awq_marlin.py:89] The model is convertible to awq_marlin during runtime. Using awq_marlin kernel.\nINFO 08-22 10:16:34 llm_engine.py:174] Initializing an LLM engine (v0.5.4) with config: model='casperhansen/llama-3-70b-instruct-awq', speculative_config=None, tokenizer='casperhansen/llama-3-70b-instruct-awq', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=8192, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=awq_marlin, enforce_eager=True, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None), seed=0, served_model_name=casperhansen/llama-3-70b-instruct-awq, use_v2_block_manager=False, enable_prefix_caching=False)\nINFO 08-22 10:16:35 model_runner.py:720] Starting to load model casperhansen/llama-3-70b-instruct-awq...\nINFO 08-22 10:16:36 weight_utils.py:225] Using model weights format ['*.safetensors']\nINFO 08-22 10:17:10 model_runner.py:732] Loading model weights took 37.0561 GB\nINFO 08-22 10:17:16 gpu_executor.py:102] # GPU blocks: 6068, # CPU blocks: 819\nmodel loading took 46.38 seconds\nStarting 8 responses generation\n8 responses generation took 213.59 seconds\n{'Count to 1000, skip unpopular numbers': '5fa4c4a18a1534b96c2eb2c5a30f63da0237b338aebf745d27d3d73dbc8dedfa2aed7070799440ac37e8610f9dd4926371f77a98e79c50a2c8b5b583cbf7c86e',\n 'Describe justice system in UK vs USA in 2000-5000 words': '83c0ec6b7f37d53b798093724f72a40195572be308b65471e8d2aae18379ef79655233858eb842ebf73967b058c38685fbea9543a3d1b3b4f41684b5fd95eede',\n 'Describe schooling system in UK vs USA in 2000-5000 words': 'f5d13dd9ee6b6b0540bd3e4adf6baec37ff5d4dc3e1158344f5ab2c690880de0ac1263d3f2691d6b904271298ba0b023adf541ba2f7fb1add50ba27f7a67d3a1',\n 'Explain me some random problem for me in 2000-5000 words': '143fc78fb373d10e8b27bdc3bcd5a5a9b5154c8a9dfeb72102d610a87cf47d5cfeb7a4be0136bf0ba275e3fa46e8b6cfcbeb63af6c45714abcd2875bb7bd577c',\n 'Tell me entire history of USA': '210fa7578650d083ad35cae251f8ef272bdc61c35daa08eb27852b3ddc59262718300971b1ac9725c9ac08f63240a1a13845d6c853d2e08520567288d54b5518',\n 'Write a ballad. Pick a random theme.': '21c8744c38338c8e8c4a9f0efc580b9040d51837573924ef731180e7cc2fb21cb96968c901803abad6df1b4f035096ec0fc75339144f133c754a8303a3f378e3',\n 'Write an epic story about a dragon and a knight': '81ff9b82399502e2d3b0fd8f625d3c3f6141c4c179488a247c0c0cc3ccd77828f0920c3d8c03621dfe426e401f58820a6094db5f3786ab7f12bfb13d6224ef94',\n 'Write an essay about being a Senior developer.': '0921d5c3b2e04616dbb655e6ba4648911b9461a4ecdb0d435ebf190d903a92c20cf1343d98de65b6e9690f5e6b1c8f3bfc58e720168fa54dc0e293f0f595505c'}\n" stderr: "+ cd /root/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb\n+ export PATH=/root/.cargo/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin\n+ PATH=/root/.cargo/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin\n+ source .venv/bin/activate\n++ '[' -n x ']'\n++ SCRIPT_PATH=.venv/bin/activate\n++ '[' .venv/bin/activate = bash ']'\n++ deactivate nondestructive\n++ unset -f pydoc\n++ '[' -z '' ']'\n++ '[' -z '' ']'\n++ hash -r\n++ '[' -z '' ']'\n++ unset VIRTUAL_ENV\n++ unset VIRTUAL_ENV_PROMPT\n++ '[' '!' nondestructive = nondestructive ']'\n++ VIRTUAL_ENV=/root/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb/.venv\n++ '[' linux-gnu = cygwin ']'\n++ '[' linux-gnu = msys ']'\n++ export VIRTUAL_ENV\n++ _OLD_VIRTUAL_PATH=/root/.cargo/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin\n++ PATH=/root/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb/.venv/bin:/root/.cargo/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin\n++ export PATH\n++ '[' x2024-08-22_12-16-19_1x_a100_sxm4_80gb '!=' x ']'\n++ VIRTUAL_ENV_PROMPT=2024-08-22_12-16-19_1x_a100_sxm4_80gb\n++ export VIRTUAL_ENV_PROMPT\n++ '[' -z '' ']'\n++ '[' -z '' ']'\n++ _OLD_VIRTUAL_PS1=\n++ PS1='(2024-08-22_12-16-19_1x_a100_sxm4_80gb) '\n++ export PS1\n++ alias pydoc\n++ true\n++ hash -r\n+ python -m vllm_llama_3_70b_instruct_awq /root/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb/output\n+ tee /root/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb/output/stdout.txt\n\rLoading safetensors checkpoint shards: 0% Completed | 0/9 [00:00<?, ?it/s]\n\rLoading safetensors checkpoint shards: 11% Completed | 1/9 [00:01<00:12, 1.55s/it]\n\rLoading safetensors checkpoint shards: 22% Completed | 2/9 [00:03<00:14, 2.06s/it]\n\rLoading safetensors checkpoint shards: 33% Completed | 3/9 [00:06<00:13, 2.31s/it]\n\rLoading safetensors checkpoint shards: 44% Completed | 4/9 [00:09<00:12, 2.42s/it]\n\rLoading safetensors checkpoint shards: 56% Completed | 5/9 [00:11<00:09, 2.44s/it]\n\rLoading safetensors checkpoint shards: 67% Completed | 6/9 [00:15<00:08, 2.97s/it]\n\rLoading safetensors checkpoint shards: 78% Completed | 7/9 [00:17<00:05, 2.72s/it]\n\rLoading safetensors checkpoint shards: 89% Completed | 8/9 [00:21<00:03, 3.06s/it]\n\rLoading safetensors checkpoint shards: 100% Completed | 9/9 [00:22<00:00, 2.40s/it]\n\rLoading safetensors checkpoint shards: 100% Completed | 9/9 [00:22<00:00, 2.51s/it]\n\n/root/experiments/vllm_llama_3_70b_instruct_awq/2024-08-22_12-16-19_1x_a100_sxm4_80gb/.venv/lib/python3.11/site-packages/vllm/model_executor/layers/sampler.py:287: UserWarning: cumsum_cuda_kernel does not have a deterministic implementation, but you set 'torch.use_deterministic_algorithms(True, warn_only=True)'. You can file an issue at https://github.com/pytorch/pytorch/issues to help us prioritize adding deterministic support for this operation. (Triggered internally at ../aten/src/ATen/Context.cpp:83.)\n probs_sum = probs_sort.cumsum(dim=-1)\n\rProcessed prompts: 0%| | 0/8 [00:00<?, ?it/s, est. speed input: 0.00 toks/s, output: 0.00 toks/s]\rProcessed prompts: 12%|█▎ | 1/8 [03:33<24:55, 213.59s/it, est. speed input: 0.15 toks/s, output: 19.18 toks/s]\rProcessed prompts: 100%|██████████| 8/8 [03:33<00:00, 26.70s/it, est. speed input: 1.32 toks/s, output: 153.42 toks/s]\n" status_code: 0
2024-08-22 12:20:56,801 - __main__ - INFO - Syncing output back to local
2024-08-22 12:20:57,304 - __main__ - INFO - Done
Loading

0 comments on commit 832e55b

Please sign in to comment.