diff --git a/.github/workflows/build_push_image.yml b/.github/workflows/build_push_image.yml index 3dd48ed..4b20feb 100644 --- a/.github/workflows/build_push_image.yml +++ b/.github/workflows/build_push_image.yml @@ -1,5 +1,10 @@ name: "CD: build & push image" +on: + push: + branches: [build-image] + workflow_dispatch: + env: PYTHON_DEFAULT_VERSION: "3.12" TAG_VERSION: "v0-latest" @@ -28,7 +33,6 @@ jobs: - name: Docker build and push run: | - df -h IMAGE_NAME="${DOCKER_REPO_NAME}:${TAG_VERSION}" cd src/compute_horde_prompt_gen diff --git a/.github/workflows/smoke_test.yml b/.github/workflows/smoke_test.yml index 331804a..a1b76eb 100644 --- a/.github/workflows/smoke_test.yml +++ b/.github/workflows/smoke_test.yml @@ -3,6 +3,9 @@ name: Run Smoke Test on: push: branches: [master, main] + pull_request: + branches: [master, main] + workflow_dispatch: env: PYTHON_DEFAULT_VERSION: "3.11" @@ -28,7 +31,7 @@ jobs: python3 run.py --model_name mock --number_of_batches 5 --number_of_prompts_per_batch 20 --uuids uuid1,uuid2,uuid3,uuid4,uuid5 echo -e "\ngenerated batches:" - ls ./output/ + ls output/ echo -e "\nchecking if prompts are generated fine" for i in $(seq 1 5); do diff --git a/README.md b/README.md index 87612b8..385c117 100644 --- a/README.md +++ b/README.md @@ -7,27 +7,31 @@ The prompt that generates prompts is inspired from [Bittensor Subnet 18 (Cortex. The generated prompts will be saved in `/prompts_.txt`, each line of the text file containing a prompt. +supports llama3 (`meta-llama/Meta-Llama-3.1-8B-Instruct`) and phi3 (`microsoft/Phi-3.5-mini-instruct`) models ### build image ```bash -# download the model data from huggingface -python3 download_model.py --huggingface_token - cd src/compute_horde_prompt_gen + +# download model data +python3 download_model.py --model_name phi3 --huggingface_token + +# build the image docker build -t compute-horde-prompt-gen . ``` ### run image ```bash -docker run -v ./output/:/app/output/ compute-horde-prompt-gen --number_of_batches 3 --number_of_prompts_per_batch 4 --uuids uuid1,uuid2,uuid3 +docker run -v ./output/:/app/output/ compute-horde-prompt-gen --model_name phi3 --number_of_prompts_per_batch 4 --uuids uuid1,uuid2,uuid3 ``` ### testint ```bash -python3 run.py --mock_model --number_of_batches 3 --number_of_prompts_per_batch 4 --uuids uuid1,uuid2,uuid3 +cd src/compute_horde_prompt_gen +python3 run.py --model_name mock --number_of_prompts_per_batch 4 --uuids uuid1,uuid2,uuid3 ``` --- diff --git a/download_model.py b/src/compute_horde_prompt_gen/download_model.py similarity index 51% rename from download_model.py rename to src/compute_horde_prompt_gen/download_model.py index 0336dd7..91f02b1 100644 --- a/download_model.py +++ b/src/compute_horde_prompt_gen/download_model.py @@ -1,9 +1,15 @@ +import os import argparse from transformers import ( AutoTokenizer, AutoModelForCausalLM, ) +MODEL_PATHS = { + "llama3": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "phi3": "microsoft/Phi-3.5-mini-instruct", +} + if __name__ == "__main__": parser = argparse.ArgumentParser(description="Save huggingface model") parser.add_argument( @@ -15,24 +21,32 @@ parser.add_argument( "--model_name", type=str, - default="meta-llama/Meta-Llama-3.1-8B-Instruct", - help="Model name to use", + choices=["llama3", "phi3"], + required=True, + help="Model to use - options are llama3 or phi3", ) parser.add_argument( - "--model_path", + "--save_path", type=str, - default="./src/compute_horde_prompt_gen/saved_models/", + default="./saved_models/", help="Path to save the model and tokenizer to", ) args = parser.parse_args() + save_path = os.path.join(args.save_path, args.model_name) + model_name = MODEL_PATHS[args.model_name] + + print(f"Saving {model_name} model to {save_path}\n") model = AutoModelForCausalLM.from_pretrained( - args.model_name, + model_name, # either give token directly or assume logged in with huggingface-cli token=args.huggingface_token or True, ) - model.save_pretrained(args.model_path) + model.save_pretrained(save_path) - tokenizer = AutoTokenizer.from_pretrained(args.model_name) - tokenizer.save_pretrained(args.model_path) + tokenizer = AutoTokenizer.from_pretrained( + model_name, + token=args.huggingface_token or True, + ) + tokenizer.save_pretrained(save_path) diff --git a/src/compute_horde_prompt_gen/model.py b/src/compute_horde_prompt_gen/model.py index 65f1c4f..d68b513 100644 --- a/src/compute_horde_prompt_gen/model.py +++ b/src/compute_horde_prompt_gen/model.py @@ -1,23 +1,28 @@ import logging - -from prompt import PROMPT_ENDING +import io log = logging.getLogger(__name__) +def strip_input(output: str, ending: str) -> str: + # input prompt is repeated in the output, so we need to remove it + idx = output.find(ending) + len(ending) + return output[idx:].strip() + + class MockModel: def __init__(self): pass def generate(self, prompts: list[str], num_return_sequences: int, **_kwargs): - return [1 for _ in range(len(prompts) * num_return_sequences)] - - def decode(self, _output): - return f"COPY PASTE INPUT PROMPT {PROMPT_ENDING} Here is the list of prompts:\nHow are you?\nDescribe something\nCount to ten\n" + content = f"Here is the list of prompts:\nHow are you?\nDescribe something\nCount to ten\n" + return [content for _ in range(len(prompts) * num_return_sequences)] class GenerativeModel: def __init__(self, model_path: str, quantize: bool = False): + self.input_prompt_ending = None + import torch from transformers import ( AutoTokenizer, @@ -45,20 +50,54 @@ def __init__(self, model_path: str, quantize: bool = False): model_path, local_files_only=True, ) + + def tokenize(self, prompts: list[str], role: str) -> str: # set default padding token self.tokenizer.pad_token = self.tokenizer.eos_token + role_templates = { + "system": "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n{{{{ {} }}}}<|eot_id|>", + "user": "<|start_header_id|>user<|end_header_id|>\n{{{{ {} }}}}<|eot_id|>", + "assistant": "<|start_header_id|>assistant<|end_header_id|>\n{{{{ {} }}}}<|eot_id|>", + "end": "<|start_header_id|>assistant<|end_header_id|>", + } + + def tokenize(prompt: str) -> str: + msgs = [ + {"role": "system", "content": role}, + {"role": "user", "content": prompt}, + ] + full_prompt = io.StringIO() + for msg in msgs: + full_prompt.write(role_templates[msg["role"]].format(msg["content"])) + full_prompt.write(role_templates["end"]) + return full_prompt.getvalue() + + inputs = [tokenize(prompt) for prompt in prompts] + inputs = self.tokenizer(inputs, return_tensors="pt", padding=True).to("cuda") + return inputs + + def decode(self, output) -> list[str]: + return [ + strip_input( + self.tokenizer.decode(x, skip_special_tokens=True), + self.input_prompt_ending, + ) + for x in output + ] + def generate( self, prompts: list[str], + role: str, num_return_sequences: int, max_new_tokens: int, temperature: float, ): # encode the prompts - inputs = self.tokenizer(prompts, return_tensors="pt", padding=True).to("cuda") + inputs = self.tokenize(prompts, role) - return self.model.generate( + output = self.model.generate( **inputs, max_new_tokens=max_new_tokens, temperature=temperature, @@ -66,5 +105,16 @@ def generate( do_sample=True, # use sampling-based decoding ) - def decode(self, output): - return self.tokenizer.decode(output, skip_special_tokens=True) + return self.decode(output) + + +class Phi3(GenerativeModel): + def __init__(self, model_path: str, quantize: bool = False): + super().__init__(model_path, quantize) + self.input_prompt_ending = "assistant<|end_header_id|>" + + +class Llama3(GenerativeModel): + def __init__(self, model_path: str, quantize: bool = False): + super().__init__(model_path, quantize) + self.input_prompt_ending = " }}assistant" diff --git a/src/compute_horde_prompt_gen/prompt.py b/src/compute_horde_prompt_gen/prompt.py index d97f049..eed919b 100644 --- a/src/compute_horde_prompt_gen/prompt.py +++ b/src/compute_horde_prompt_gen/prompt.py @@ -1,25 +1,29 @@ -import io import random from seeds import THEMES, ABILITIES, FORMATS -PROMPT_ENDING = " }}assistant" - class PromptGeneratingPrompt: def random_select(self, arr: list[str], num: int = 5) -> str: random.shuffle(arr) return ", ".join(arr[:num]) + ", etc" - def generate_prompt(self) -> str: + def generate_prompt(self, short=True) -> str: + themes = self.random_select(THEMES, num=3) + + if short: + return ( + f"Generate a list of 10 questions or instruct tasks related to the themes of {themes}. " + f"Output each prompt on a new line without any extra commentary or special characters." + ) + relevance_level = random.randint(5, 20) complexity_level = random.randint(5, 20) - themes = self.random_select(THEMES, num=3) abilities = self.random_select(ABILITIES, num=4) formats = self.random_select(FORMATS, num=5) - prompt = ( - f"Generate a list of 5 complex prompts (questions or instruct tasks) that cover a wide range of skills and knowledge areas related to the themes of {themes}. " + return ( + f"Generate a list of 10 complex prompts (questions or instruct tasks) that cover a wide range of skills and knowledge areas related to the themes of {themes}. " f"Each of these prompts should: " f"\n- have a complexity level of {complexity_level} out of 20 and a relevance level to the theme of {relevance_level} out of 20" f"\n- test various cognitive abilities ({abilities}) and require different types of writting formats ({formats})" @@ -27,30 +31,8 @@ def generate_prompt(self) -> str: f"\n- varyingly explore the {themes} in a manner that is consistent with their assigned complexity and relevance levels to the theme" f"\nOutput each prompt on a new line without any extra commentary or special characters." ) - return prompt - - def generate_role(self) -> str: - role = "You are a prompt engineer tasked with prompts of varying complexity to test the capabilities of a new language model. For each prompt, consider what aspect of the language model's capabilities it is designed to test and ensure that the set of prompts covers a broad spectrum of potential use cases for the language model. Only output the prompts, one per line without any extra commentary. Do not use any special characters or formatting, numbering or styling in the output." - return role - - def tokenize(self, prompt: str, role: str) -> str: - role_templates = { - "system": "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n{{{{ {} }}}}<|eot_id|>", - "user": "<|start_header_id|>user<|end_header_id|>\n{{{{ {} }}}}<|eot_id|>", - "assistant": "<|start_header_id|>assistant<|end_header_id|>\n{{{{ {} }}}}<|eot_id|>", - "end": "<|start_header_id|>assistant<|end_header_id|>", - } - msgs = [ - {"role": "system", "content": role}, - {"role": "user", "content": prompt}, - ] - full_prompt = io.StringIO() - for msg in msgs: - full_prompt.write(role_templates[msg["role"]].format(msg["content"])) - full_prompt.write(role_templates["end"]) - return full_prompt.getvalue() - - def generate(self): - prompt = self.generate_prompt() - role = self.generate_role() - return self.tokenize(prompt, role) + + def generate_role(self, short=True) -> str: + if short: + return "You are a prompt engineer tasked with prompts of varying complexity to test the capabilities of a new language model." + return "You are a prompt engineer tasked with prompts of varying complexity to test the capabilities of a new language model. For each prompt, consider what aspect of the language model's capabilities it is designed to test and ensure that the set of prompts covers a broad spectrum of potential use cases for the language model. Only output the prompts, one per line without any extra commentary. Do not use any special characters or formatting, numbering or styling in the output." diff --git a/src/compute_horde_prompt_gen/run.py b/src/compute_horde_prompt_gen/run.py index 4b12eaf..c7bf68f 100644 --- a/src/compute_horde_prompt_gen/run.py +++ b/src/compute_horde_prompt_gen/run.py @@ -4,9 +4,10 @@ import argparse from prompt import PromptGeneratingPrompt -from model import MockModel, GenerativeModel +from model import MockModel, Llama3, Phi3 from utils import parse_output, append_to_file +logging.basicConfig(level=logging.INFO) log = logging.getLogger(__name__) @@ -24,25 +25,27 @@ def generate_prompts( i = -1 while total_prompts > 0: i += 1 - prompts = [prompt_generator.generate() for _ in range(batch_size)] + prompts = [prompt_generator.generate_prompt() for _ in range(batch_size)] + role = prompt_generator.generate_role() start_ts = datetime.datetime.now() sequences = model.generate( num_return_sequences=num_return_sequences, prompts=prompts, + role=role, max_new_tokens=max_new_tokens, temperature=temperature, ) + seconds_taken = (datetime.datetime.now() - start_ts).total_seconds() log.info(f"{i=} generation took {seconds_taken:.2f}s") new_prompts = [] for j, sequence in enumerate(sequences): - output = model.decode(sequence) - generated_prompts = parse_output(output) - log.debug(f"{i=} sequence={j} {generated_prompts=} from {output=}") + generated_prompts = parse_output(sequence) + # log.debug(f"{i=} sequence={j} {generated_prompts=} from {sequence=}") - log.info(f"{i=} {sequence=} generated {len(generated_prompts)} prompts") + log.info(f"{i=} sequence={j} generated {len(generated_prompts)} prompts") new_prompts.extend(generated_prompts) # check_prompts_quality(new_prompts) @@ -92,6 +95,13 @@ def generate_prompts( default=1.0, help="Temperature", ) + parser.add_argument( + "--model_name", + type=str, + choices=["llama3", "phi3", "mock"], + required=True, + help="Model to use - options are llama3 or phi3", + ) parser.add_argument( "--model_path", type=str, @@ -116,12 +126,6 @@ def generate_prompts( required=True, help="Comma separated list of uuids, used as file names of output batches, i.e. `output/prompts_{uuid}.txt`", ) - parser.add_argument( - "--mock_model", - action="store_true", - default=False, - help="Mock llama3 model for testing purposes only", - ) parser.add_argument( "--output_folder_path", type=str, @@ -138,11 +142,21 @@ def generate_prompts( len(uuids) == args.number_of_batches ), "Number of uuids should be equal to number of batches requested" - model = ( - GenerativeModel(model_path=args.model_path, quantize=args.quantize) - if not args.mock_model - else MockModel() - ) + model_path = os.path.join(args.model_path, args.model_name) + if args.model_name == "mock": + model = MockModel() + elif args.model_name == "llama3": + model = Llama3( + model_path=model_path, + quantize=args.quantize, + ) + elif args.model_name == "phi3": + model = Phi3( + model_path=model_path, + quantize=args.quantize, + ) + else: + raise ValueError(f"Invalid model name: {args.model_name}") for uuid in uuids: start_ts = datetime.datetime.now() diff --git a/src/compute_horde_prompt_gen/utils.py b/src/compute_horde_prompt_gen/utils.py index 64ca608..5825cab 100644 --- a/src/compute_horde_prompt_gen/utils.py +++ b/src/compute_horde_prompt_gen/utils.py @@ -3,8 +3,6 @@ import logging import collections -from prompt import PROMPT_ENDING - log = logging.getLogger(__name__) @@ -16,10 +14,6 @@ def clean_line(line: str) -> str: def parse_output(output: str) -> list[str]: - # input prompt is repeated in the output, so we need to remove it - idx = output.find(PROMPT_ENDING) + len(PROMPT_ENDING) - output = output[idx:].strip() - # split into lines and clean them lines = output.split("\n") lines = [clean_line(line) for line in lines]