-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbibliography.bib
619 lines (608 loc) · 18.3 KB
/
bibliography.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
%Books
@book{neural_nets_deep_learning,
title = {Neural Networks and Deep Learning},
publisher = {Determination Press},
year = {2015},
author = {Michael A. Nielsen}
}
@book{pattern_and_ml,
title = {Pattern Recognition and Machine Learning},
publisher = {Springer Publishing},
year = {2006},
author = {Christopher M. Bishop},
ISBN = 9788132209065
}
% Unpublished Books
@unpublished{deep_learning,
title={Deep Learning},
author={Ian Goodfellow and Yoshua Bengio and Aaron Courville},
note={Book in preparation for MIT Press},
url={http://www.deeplearningbook.org},
year={2016}
}
@unpublished{conv_guide,
title={A guide to convolution arithmetic for deep learning},
author={Vincent Dumoulin and Francesco Visin},
url={https://arxiv.org/abs/1603.07285},
day={24},
month={March},
year={2016}
}
% Papers
@inproceedings{unsup_learn_lstm,
author = {Nitish Srivastava and
Elman Mansimov and
Ruslan Salakhutdinov},
title = {Unsupervised Learning of Video Representations using {LSTM}s},
booktitle = {ICML},
year = {2015}
}
@inproceedings{spat_temp_video_autoenc,
author = {Viorica P{\u a}tr{\u a}ucean and
Ankur Handa and
Roberto Cipolla},
title = {Spatio-temporal video autoencoder with differentiable memory},
booktitle = {ICLR},
year = {2016}
}
@inproceedings{deep_multiscale_video_pred,
author = {Michael Mathieu and
Camille Couprie and
Yann LeCun},
title = {Deep Multi-Scale Video Prediction Beyond Mean Square Error},
booktitle = {ICLR},
year = {2016},
month = {February},
}
@inproceedings{conv_lstm_nowcasting,
author = {Xingjian Shi and
Zhourong Chen and
Hao Wang and
Dit-Yan Yeung},
title = {Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting},
year = {2015}
}
@inproceedings{ann,
author = {Abhishek Kar},
title = {Future Image Prediction using Artificial Neural Networks},
year = {2012},
}
@inproceedings{ann2,
author = {Nishchal K. Verma},
title = {Future Image Frame Generation using Artificial Neural Network with Selected Features},
booktitle = {AIPR},
year = {2012},
month = {October},
}
@inproceedings{flownet,
author = {Philipp Fischer and
Alexey Dosovitskiy and
Philip Häusser and
Caner Hazırbas and
Vladimir Golkov},
title = {FlowNet: Learning Optical Flow with Convolutional Networks},
year = {2015},
url = {https://arxiv.org/abs/1504.06852}
}
@inproceedings{two_stream_action,
author = {Karen Simonyan and Andrew Zisserman},
title = {Two-Stream Convolutional Networks for Action Recognition in Videos},
booktitle = {Proc. NIPS},
year = {2014},
pages = {568-576}
}
@inproceedings{large_video_class,
author = {Andrej Karpathy and
George Toderici and
Sanketh Shetty and
Thomas Leung and
Rahul Sukthankar and
Li Fei-Fei},
title = {Large-scale Video Classification with Convolutional Neural Networks},
booktitle = {CVPR},
year = {2014},
pages = {1725-1732}
}
@inproceedings{conv3d_action_class,
author = {Shuiwang Ji and
Wei Xu and
Ming Yang and
Kai Yu},
title = {3D Convolutional Neural Networks for Human Action Recognition},
booktitle = {IEEE Trans. PAMI},
year = {2013},
pages = {221-231}
}
@inproceedings{longterm_rec_recog,
author = {Jeff Donahue and
Lisa Anne Hendricks and
Marcus Rohrbach and
Subhashini Venugopalan and
Sergio Guadarrama and
Kate Saenko and
Trevor Darrell},
title = {Long-term Recurrent Convolutional Networks for Visual Recognition and Description},
year = {2014},
}
@inproceedings{lstm,
author = {Sepp Hochreiter and
Jürgen Schmidhuber},
title = {Long short-term memory},
booktitle = {Neural Computing},
year = {1997},
pages = {1735-1780}
}
@inproceedings{lstm_v2,
author = {Alex Graves and
Santiago Fernández and
Faustino Gomez and
Jürgen Schmidhuber},
title = {Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks},
booktitle = {ICML},
year = {2006},
pages = {369-376}
}
@inproceedings{frame_interpol,
author = {João Ascenso and
Catarina Brites and
Fernando Pereira},
title = {Improving Frame Interpolation with Spatial Motion Smoothing for Pixel Domain Distributed Video Coding},
booktitle = {5th EURASIP Conference on Speech and Image Processing, Multimedia Communications and Services},
year = {2005},
pages = {1-6}
}
@inproceedings{causal_video_seg,
author = {Camille Couprie and
Clement Farabet and Yann LeCun and
Laurent Najman},
title = {Causal Graph-Based Video Segmentation},
booktitle = {ICIP},
year = {2013},
}
@inproceedings{relu,
author = {Xavier Glorot and
Antoine Bordes and
Yoshua Bengio},
title = {Deep Sparse Rectifier Neural Networks},
booktitle = {AISTATS},
year = {2011},
}
@inproceedings{xavier-init,
author = {Xavier Glorot and
Yoshua Bengio},
title = {Understanding the difficulty of training deep feedforward neural networks},
booktitle = {AISTATS},
year = {2010},
}
@inproceedings{adam,
author = {Diederik P. Kingma and
Jimmy Lei Ba},
title = {Adam: A Method for Stochasitc Optimization},
booktitle = {ICLR},
year = {2015},
}
@inproceedings{imagenet,
author = {Alex Krizhevsky and
Ilya Sutskever and
Geoffrey E. Hinton},
title = {ImageNet Classification with Deep Convolutional Neural Networks},
booktitle = {NIPS},
year = {2012},
}
@inproceedings{gan,
author = {Ian J. Goodfellow and
Jean Pouget-Abadie and
Mehdi Mirza and
Bing Xu and
David Warde-Farley and
Sherjil Ozair and
Aaron Courville and
Yoshua Bengio},
title = {Generativ Adversarial Nets},
booktitle = {NIPS},
year = {2014},
}
@inproceedings{batchnorm,
author = {Sergey Ioffe and
Christian Szegedy},
title = {Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift},
booktitle = {Proc. of IEEE},
year = {2015},
}
@inproceedings{rnn-batchnorm,
author = {Tim Cooijmans and
Nicolas Balls and
César Laurent and
\c{C}a\u{g}lar Gül\c{c}ehre},
title = {Recurrent Batch Normalization},
booktitle = {Proc. of IEEE},
year = {2015},
}
@inproceedings{gru,
author = {Junyoung Chung and
Caglar Gulcehre and
Kyunghyun Cho and
Yoshua Bengio},
title = {Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling},
year = {2014},
}
@inproceedings{lstm-space,
author = {Klaus Greff and
Rupesh Kumar Srivastava and
Jan Koutnik and
Bas R. Steunebrink and
Jürgen Schmidhuber},
title = {LSTM: A Search Space Odyssey},
year = {2015},
}
@inproceedings{gru-video,
author = {Nicolas Ballas and
Li Yao and
Chris Pal and
Aaron Courville},
title = {Delving Deeper into Convolutional Networks for Learning Video Representations},
booktitle = {ICLR},
year = {2016},
month = {March},
}
@inproceedings{learning-perc-sim,
author = {Karl Ridgeway and
Jake Snell and
Brett D. Roads and
Richard S. Zemel and
Michael C. Mozer},
title = {Learning to Generate Images with Perceptual Similarity Metrics},
year = {2016},
month = {March},
}
@inproceedings{loss-func-img-proc,
author = {Hang Zhao and
Orazio Gallo and
Iuri Frosio and
Jan Kautz},
title = {Loss Functions for Neural Networks for Image Processing},
year = {2016},
month = {June},
}
@inproceedings{ms-ssim,
author = {Zhou Wang and
Eero P. Simonselli and
Alen Conrad Bovik},
title = {Multi-Scale Structural Similarity for Image Quality Assessment},
booktitle = {IEEE Conference on Signals, Systems and Computers},
year = {2003},
month = {November},
}
@inproceedings{flow-static-img,
author = {Jacob Walker and
Abhinav Gupta and
Martial Hebert},
title = {Dense Optical Flow Prediction from a Static Image},
year = {2015},
month = {December},
}
@inproceedings{sem-img-inpainting,
author = {Raymond Yeh and
Chen Chen and
Teck Yian Lim and
Mark Hasegawa-Johnson and
Minh N. Do},
title = {Semantic Image Inpainting with Perceptual and Contextual Losses},
year = {2016},
month = {July},
}
@inproceedings{k-sparse-autoenc,
author = {Alireza Makhzani and
Brendan Frey},
title = {k-Sparse Autoencoders},
booktitle = {ICLR},
year = {2014},
month = {December},
}
@inproceedings{rect-autoenc,
author = {Xavier Gloro and
Antoine Bordes and
Yoshua Bengio},
title = {Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach},
booktitle = {ICML},
year = {2011},
month = {June},
}
@inproceedings{rnn-enc-dec1,
author = {Xi Peng and
Rogerio Feris and
Xiaoyu Wang and
Dimitris Metaxas},
title = {A Recurrent Encoder-Decoder Network for Sequential Face Alignment},
year = {2016},
month = {August},
}
@inproceedings{rnn-enc-dec2,
author = {Liang Lu and
Xingxing Zhang and
Steve Renals},
title = {On Training Recurrent Neural Network Encoder-Decoder For Large Vocabulary End-to-End Speech Recognition},
booktitle = {ICASSP},
year = {2016},
month = {March},
}
@inproceedings{beyond_snippets_video_class,
author = {Joe Yue-Hei Ng and
Matthew Hausknecht and
Sudheendra Vijayanarasimhan and
Oriol Vinyals and
Rajat Monga and
George Toderici},
title = {Beyond Short Snippets: Deep Networks for Video Classification},
booktitle = {CVPR},
year = {2016},
}
@inproceedings{brnn_fist,
author = {Kyunghyun Cho and
Bart van Merrienboer and
Caglar Gulcehre and
Dzmitry Bahdanau and
Fethi Bougares and
Holger. Schwenk and
Yoshua Bengio},
title = {Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation},
booktitle = {EMNLP},
year = {2014},
}
@inproceedings{brnn_second,
author = {Ilya Sutskever and
Oriol Vinyals and
Quoc V. Le},
title = {Sequence to Sequence Learning with Neural Networks},
booktitle = {NNIPS},
year = {2014},
}
@inproceedings{ucf,
author = {Khurram Soomro and
Amir Roshan Zamir and
Mubarak Shah},
title = {UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild},
booktitle = {CRCV-TR-12-01},
year = {2012},
month = {November},
}
@inproceedings{gen_img_perc_sim,
author = {Alexey Dosovitskiy and
Thomas Brox},
title = {Generating Images with Perceptual Similarity Metrics based on Deep Networks},
year = {2016},
month = {February},
}
@inproceedings{sched_sample,
author = {Samy Bengio and
Oriol Vinyals and
Navdeep Jaitly and
Noam Shazeer},
title = {Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks},
year = {2015},
month = {September},
}
%Journals
@article{lecun_conv,
author = {Yann LeCun and
Léon Bottou and
Yoshua Bengio and
Patrick Hafner},
title = {Gradient-Based Learning Applied to Document Recognition},
journal = {Proceedings of the IEEE},
volume = 86,
number = 11,
pages = {2278-2324},
year = {1998},
}
@article{dropout,
author = {Nitish Srivastava and
Geoffrey E. Hinton and
Alex Krizhevsky and
Ilya Sutskever and
Ruslan R. Salakhutdinov},
title = {Dropout: A Simple Way to Prevent Neural Networks from Overfitting},
journal = {Journal of Machine Learning Research},
year = 2014,
number = 15,
pages = {1929-1958},
month = 6,
}
@article{rnn-vanish,
author = {Yoshua Bengio and
Patrice Simard and
Paolo Frasoni},
title = {Learning Long-Term Dependencies with Gradient Descent is Difficult},
journal = {IEEE Transaction on Neural Networks},
year = {1994},
volume = 5,
number = 2,
pages = {157-166},
month = {March},
}
@article{lstm_peep,
author = {Felix A. Gers and
Jürgen Schmidhuber},
title = {Recurrent Nets that Time and Count},
journal = {IEEE Trans. on Neural Networks},
year = {2000},
volume = 3,
pages = {850-855},
isbn = {0769506194},
}
@article{ssim,
author = {Zhou Wang and
Alen Conrad Bovik and
Hamid Rahim Sheikh and
Eero P. Simoncelli},
title = {Image Quality Assessment: From Error Visibility to Structural Similarity},
journal = {IEEE Trans. Image Processing},
volume = {13},
number = {4},
year = {2004},
month = {April},
pages = {600-612}
}
@article{ssim-slide,
author = {Zhou Wang and
Alen Conrad Bovik},
title = {A Univeral Image Quality Index},
journal = {IEEE Signal Processing Letters},
volume = {9},
year = {2002},
month = {March},
pages = {81-84}
}
@article{autoenc_deeper,
author = {Geoffrey E. Hinton and
Ruslan R. Salakhutdinov},
title = {Reducing the Dimensionality of data with Neural Networks},
journal = {Sience},
volume = {313},
number = {5786},
year = {2006},
month = {July},
pages = {504-507}
}
%Thesis
@mastersthesis{hochreiter,
author = {Josef Hochreiter},
title = {Untersuchungen zu dynamischen neuronalen Netzen},
school = {Technische Universität Munchen},
day = {15},
month = {June},
year = {1991},
address = {Arcisstr. 21, 80333 Munich , Germany},
}
% Websites
@online{understand_lstm,
author = {Christopher Olah},
title = {Understanding LSTM Networks},
day = 27,
month = August,
year = 2015,
url = {http://colah.github.io/posts/2015-08-Understanding-LSTMs},
urldate = {2016-09-20}
}
@online{understand_xavier,
author = {Andreas L. Jone},
title = {An Explanation of Xavier Initialization},
day = 14,
month = February,
year = 2015,
url = {http://andyljones.tumblr.com/post/110998971763/an-explanation-of-xavier-initialization},
urldate = {2016-09-22}
}
@online{optimization,
author = {Sebastian Ruder},
title = {An overview of gradient descent optimization algorithms},
day = 19,
month = January,
year = 2016,
url = {http://sebastianruder.com/optimizing-gradient-descent},
urldate = {2016-09-22}
}
@online{rnn-effectiveness,
author = {Andrej Karpathy},
title = {The Unreasonable Effectiveness of Recurrent Neural Networks},
day = 11,
month = May,
year = 2015,
url = {http://karpathy.github.io/2015/05/21/rnn-effectiveness},
urldate = {2016-09-25}
}
@online{rnn-bptt,
author = {Geoffrey Hinton},
title = {Neural Networks for Machine Learning: Training RNNs with Back Propagation},
day = 6,
month = November,
year = 2013,
url = {https://www.coursera.org/learn/neural-networks},
urldate = {2016-09-25}
}
@online{stanford_data_pre,
author = {Andrew Ng and
Jiquan Ngiam and
Chuan Yu Foo and
Yifan Mai and
Caroline Suen},
title = {Standford: Unsupervised Feature Learning and Deep Learning},
day = 8,
month = April,
year = 2013,
url = {http://ufldl.stanford.edu/wiki/index.php/Data_Preprocessing},
urldate = {2016-10-03}
}
@online{tf_impl_gan,
author = {Matt Cooper},
title = {Adversarial Video Generation},
day = 9,
month = September,
year = 2016,
url = {https://github.com/dyelax/Adversarial_Video_Generation},
urldate = {2016-10-14}
}
%other
@misc{tensorflow2015-whitepaper,
title={{TensorFlow}: Large-Scale Machine Learning on Heterogeneous Systems},
url={http://tensorflow.org/},
note={Software available from tensorflow.org},
author={
Martin Abadi and
Ashish Agarwal and
Paul Barham and
Eugene Brevdo and
Zhifeng Chen and
Craig Citro and
Greg S. Corrado and
Andy Davis and
Jeffrey Dean and
Matthieu Devin and
Sanjay Ghemawat and
Ian Goodfellow and
Andrew Harp and
Geoffrey Irving and
Michael Isard and
Yangqing Jia and
Rafal Jozefowicz and
Lukasz Kaiser and
Manjunath Kudlur and
Josh Levenberg and
Dan Mane and
Rajat Monga and
Sherry Moore and
Derek Murray and
Chris Olah and
Mike Schuster and
Jonathon Shlens and
Benoit Steiner and
Ilya Sutskever and
Kunal Talwar and
Paul Tucker and
Vincent Vanhoucke and
Vijay Vasudevan and
Fernanda Viegas and
Oriol Vinyals and
Pete Warden and
Martin Wattenberg and
Martin Wicke and
Yuan Yu and
Xiaoqiang Zheng},
year={2015},
}
@inproceedings{distbelief,
title = {Large Scale Distributed Deep Networks},
author = {Jeffrey Dean and Greg S. Corrado and Rajat Monga and Kai Chen and Matthieu Devin and Quoc V. Le and Mark Z. Mao and Marc'Aurelio Ranzato and Andrew Senior and Paul Tucker and Ke Yang and Andrew Y. Ng},
year = 2012,
booktitle = {NIPS}
}
% REPORTS
@techreport{deep_arch_ai,
title = {{Learning Deep Architectures for AI}},
author = {Yoshua Bengio},
group = {Dept. IRO},
year = {2008},
institution = {Université de Montréal},
month = {July},
url = {http://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf},
}