-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathablation_complete_trfm10_duel.py
680 lines (576 loc) · 28.6 KB
/
ablation_complete_trfm10_duel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
'''
Normal Base model with <8 att heads> and <6 Encoder layers>
It runs for 350 Epochs. Training accuracy hits almost 100% while val acc limits at 66%. Bias problem. The model is too big
sq1 and sq2 are stacked to 500 places before inputting them
Use a resnet18 block to process the encoder output
removed the positional encoder layer
Adding regularization in Adam optimizer
'''
import argparse
import math
import os
import numpy as np
import pandas as pd
import torch
from torch import nn
from torch import optim
from torch.autograd import Variable
from torch.nn import functional as F
from torch.utils.data import DataLoader
from tqdm import tqdm
import pickle
from build_vocab import WordVocab
from dataset1_orig import Seq2seqDataset
import copy
from typing import Optional, Any
import torch
from torch import Tensor
from torch.nn.modules import Module
import torch.nn.functional as F
from torch.nn.modules.activation import MultiheadAttention
from torch.nn.modules.container import ModuleList
from torch.nn.init import xavier_uniform_
from torch.nn.modules.dropout import Dropout
from torch.nn.modules.linear import Linear
from torch.nn.modules.normalization import LayerNorm
import resnet18
import random
from sklearn.metrics import accuracy_score, roc_auc_score, f1_score, precision_score, recall_score, precision_recall_curve, auc, roc_curve
from sklearn.metrics import matthews_corrcoef
seed = 101
os.environ["CUDA_VISIBLE_DEVICES"] = '1'
random.seed(seed)
PAD = 0
UNK = 1
EOS = 2
SOS = 3
MASK = 4
SEP = 5
class PositionalEncoding(nn.Module):
"Implement the PE function. No batch support?"
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model) # (T,H)
position = torch.arange(0., max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + Variable(self.pe[:, :x.size(1)],
requires_grad=False)
return self.dropout(x)
class BERT1(nn.Module):
def __init__(self, vocab_size, d_model, maxlen, n_segments, n_layers, d_k, d_v, n_heads, d_ff, num_classes):
super(BERT1, self).__init__()
self.embed = nn.Embedding(vocab_size, d_model)
self.pe = PositionalEncoding(d_model, dropout=0)
# self.embedding = Embedding(vocab_size, d_model, maxlen, n_segments)
# self.layers = nn.ModuleList([EncoderLayer(d_model, d_k, d_v, n_heads, d_ff) for _ in range(n_layers)])
self.encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=n_heads,
dim_feedforward=d_ff, dropout=0, batch_first=True)
self.encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=n_layers)
# self.layers = nn.ModuleList([nn.TransformerEncoderLayer(d_model=d_model, nhead=n_heads, dim_feedforward=d_ff, dropout=0) for _ in range(n_layers)])
# self.fc = nn.Linear(d_model, d_model)
# self.activ1 = nn.Tanh()
# self.linear = nn.Linear(d_model, d_model)
# self.activ2 = gelu
# self.norm = nn.LayerNorm(d_model)
# self.classifier1 = nn.Linear(d_model, 512)
# self.classifier2 = nn.Linear(512, 256)
# self.classifier3 = nn.Linear(256, num_classes)
self.resnet18 = resnet18.ResNet(img_channels=1, num_layers=18, block=resnet18.BasicBlock,
num_classes=num_classes)
self.out3 = nn.Linear(in_features=512, out_features=num_classes)
# decoder is shared with embedding layer
# embed_weight = self.embedding.tok_embed.weight
# n_vocab = vocab_size
# n_dim = d_model
# n_vocab, n_dim = embed_weight.size()
# self.decoder = nn.Linear(n_dim, n_vocab, bias=False)
# self.decoder.weight = self.embed.weight
# self.decoder_bias = nn.Parameter(torch.zeros(n_vocab))
def forward(self, input_ids):
embedded = self.embed(input_ids)
embedded = self.pe(embedded)
# output = self.embedding(input_ids, segment_ids)
output = self.encoder(embedded)
# enc_self_attn_mask = get_attn_pad_mask(input_ids, input_ids)
# print(enc_self_attn_mask.shape)
# for layer in self.layers:
# output, enc_self_attn = layer(output, enc_self_attn_mask)
# output = layer(output)
# output : [batch_size, len, d_model], attn : [batch_size, n_heads, d_mode, d_model]
# it will be decided by first token(CLS)
# h_pooled = self.activ1(self.fc(output[:, 0])) # [batch_size, d_model]
# logits_clsf1 = self.classifier1(h_pooled) # [batch_size, 2]
# logits_clsf2 = self.classifier2(logits_clsf1)
# logits_clsf3 = self.classifier3(logits_clsf2)
output = output.reshape(output.shape[0], 1, output.shape[1], output.shape[2])
out = self.resnet18(output)
logits_clsf = self.out3(out)
# masked_pos = masked_pos[:, :, None].expand(-1, -1, output.size(-1)) # [batch_size, max_pred, d_model]
# # get masked position from final output of transformer.
# h_masked = torch.gather(output, 1, masked_pos) # masking position [batch_size, max_pred, d_model]
# h_masked = self.norm(self.activ2(self.linear(h_masked)))
# logits_lm = self.decoder(h_masked) + self.decoder_bias # [batch_size, max_pred, n_vocab]
return logits_clsf
class TrfmSeq2seq(nn.Module):
# def append_dropout(model, rate=0.1):
# for name, module in model.named_children():
# if len(list(module.children())) > 0:
# TrfmSeq2seq.append_dropout(module)
# if isinstance(module, nn.ReLU):
# # new = nn.Sequential(module, nn.Dropout2d(p=rate, inplace=False))
# new = nn.Sequential(module, nn.Dropout(p=rate))
# setattr(model, name, new)
# model = resnet18.ResNet(img_channels=1, num_layers=18, block=resnet18.BasicBlock, num_classes=56)
#
# append_dropout(model)
# print(model)
def __init__(self, in_size, hidden_size, num_classes, out_size, n_layers, n_head, dropout=0.0):
super(TrfmSeq2seq, self).__init__()
self.in_size = in_size
self.dropout = dropout
self.hidden_size = hidden_size
self.num_classes = num_classes
self.n_layers = n_layers
self.n_head = n_head
self.embed = nn.Embedding(self.in_size, self.hidden_size)
self.pe = PositionalEncoding(self.hidden_size, self.dropout)
# self.trfm = nn.Transformer(d_model=hidden_size, nhead=4, num_encoder_layers=n_layers, num_decoder_layers=n_layers, dim_feedforward=hidden_size)
self.encoder_layer = nn.TransformerEncoderLayer(d_model=self.hidden_size, nhead=self.n_head, dim_feedforward=self.hidden_size, dropout=self.dropout)
#self.encoder_layer2 = nn.TransformerEncoderLayer(d_model=hidden_size, nhead=4, dim_feedforward=hidden_size)
#self.encoder_layer3 = nn.TransformerEncoderLayer(d_model=hidden_size, nhead=4, dim_feedforward=hidden_size)
#self.encoder_layer4 = nn.TransformerEncoderLayer(d_model=hidden_size, nhead=4, dim_feedforward=hidden_size)
self.encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=self.n_layers)
self.resnet18 = resnet18.ResNet(img_channels=1, num_layers=18, block=resnet18.BasicBlock, num_classes=self.num_classes)
# self.append_dropout(self.resnet18)
# self.conv1 = nn.
self.pooler = nn.AvgPool1d(kernel_size=500)
# self.out = nn.Linear(hidden_size, out_size)
# self.out2 = nn.Linear(512, 256)
self.out3 = nn.Linear(in_features=512, out_features=num_classes)
def forward(self, src):
# src: (T,B)
embedded = self.embed(src) # (T,B,H)
embedded = self.pe(embedded) # (T,B,H)
hidden = self.encoder(embedded)
hidden = hidden.permute(1,0,2)
# print(hidden.shape)
hidden = hidden.reshape(hidden.shape[0], 1, hidden.shape[1], hidden.shape[2])
out = self.resnet18(hidden)
# print(out.shape)
# embedded = torch.flatten(embedded)
# hidden = hidden.max(dim=1)[0]
# hidden = self.pooler(hidden).squeeze()
# out = self.out2(out)
out = self.out3(out)
# out = self
# hidden = self.trfm(embedded, embedded) # (T,B,H)
# out = self.out(hidden) # (T,B,V)
# out2 = self.out2(hidden)
# out = F.log_softmax(out, dim=2) # (T,B,V)
return out # (T,B,V)
# def _encode(self, src):
# # src: (T,B)
# embedded = self.embed(src) # (T,B,H)
# embedded = self.pe(embedded) # (T,B,H)
# output = embedded
# for i in range(self.trfm.encoder.num_layers - 1):
# output = self.trfm.encoder.layers[i](output, None) # (T,B,H)
# penul = output.detach().numpy()
# output = self.trfm.encoder.layers[-1](output, None) # (T,B,H)
# if self.trfm.encoder.norm:
# output = self.trfm.encoder.norm(output) # (T,B,H)
# output = output.detach().numpy()
# # mean, max, first*2
# return np.hstack([np.mean(output, axis=0), np.max(output, axis=0), output[0, :, :], penul[0, :, :]]) # (B,4H)
#
# def encode(self, src):
# # src: (T,B)
# batch_size = src.shape[1]
# if batch_size <= 100:
# return self._encode(src)
# else: # Batch is too large to load
# print('There are {:d} molecules. It will take a little time.'.format(batch_size))
# st, ed = 0, 100
# out = self._encode(src[:, st:ed]) # (B,4H)
# while ed < batch_size:
# st += 100
# ed += 100
# out = np.concatenate([out, self._encode(src[:, st:ed])], axis=0)
# return out
# class TransformerEncoderLayer(Module):
# r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
# This standard encoder layer is based on the paper "Attention Is All You Need".
# Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
# Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
# Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
# in a different way during application.
#
# Args:
# d_model: the number of expected features in the input (required).
# nhead: the number of heads in the multiheadattention models (required).
# dim_feedforward: the dimension of the feedforward network model (default=2048).
# dropout: the dropout value (default=0.1).
# activation: the activation function of intermediate layer, relu or gelu (default=relu).
#
# Examples::
# >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
# >>> src = torch.rand(10, 32, 512)
# >>> out = encoder_layer(src)
# """
#
# def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu"):
# super(TransformerEncoderLayer, self).__init__()
# self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
# # Implementation of Feedforward model
# self.linear1 = Linear(d_model, dim_feedforward)
# self.dropout = Dropout(dropout)
# self.linear2 = Linear(dim_feedforward, d_model)
#
# self.norm1 = LayerNorm(d_model)
# self.norm2 = LayerNorm(d_model)
# self.dropout1 = Dropout(dropout)
# self.dropout2 = Dropout(dropout)
#
# self.activation = _get_activation_fn(activation)
#
# def __setstate__(self, state):
# if 'activation' not in state:
# state['activation'] = F.relu
# super(TransformerEncoderLayer, self).__setstate__(state)
#
# def forward(self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None) -> Tensor:
# r"""Pass the input through the encoder layer.
#
# Args:
# src: the sequence to the encoder layer (required).
# src_mask: the mask for the src sequence (optional).
# src_key_padding_mask: the mask for the src keys per batch (optional).
#
# Shape:
# see the docs in Transformer class.
# """
# src2 = self.self_attn(src, src, src, attn_mask=src_mask,
# key_padding_mask=src_key_padding_mask)[0]
# src = src + self.dropout1(src2)
# src = self.norm1(src)
# src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
# src = src + self.dropout2(src2)
# src = self.norm2(src)
# return src
def _get_clones(module, N):
return ModuleList([copy.deepcopy(module) for i in range(N)])
def _get_activation_fn(activation):
if activation == "relu":
return F.relu
elif activation == "gelu":
return F.gelu
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
def parse_arguments():
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--n_epoch', '-e', type=int, default=150, help='number of epochs')
parser.add_argument('--num_classes', '-c', type=int, default=65, help='number of classes')
parser.add_argument('--vocab', '-v', type=str, default='./data/vocab_db1_drugs_orig.pkl', help='vocabulary (.pkl)')
parser.add_argument('--data', '-d', type=str, default='./data/DB1_data_allFolds', help='train corpus (.csv)')
parser.add_argument('--out-dir', '-o', type=str, default='./result', help='output directory')
parser.add_argument('--name', '-n', type=str, default='ST', help='model name')
parser.add_argument('--seq_len', type=int, default=500, help='maximum length of the paired seqence')
parser.add_argument('--batch_size', '-b', type=int, default=8, help='batch size')
parser.add_argument('--n_worker', '-w', type=int, default=16, help='number of workers') # default=16
parser.add_argument('--hidden', type=int, default=256, help='length of hidden vector')
parser.add_argument('--n_layer', '-l', type=int, default=6, help='number of layers')
parser.add_argument('--n_head', type=int, default=8, help='number of attention heads')
parser.add_argument('--lr', type=float, default=5e-5, help='Adam learning rate')
parser.add_argument('--gpu', metavar='N', type=int, nargs='+', help='list of GPU IDs to use')
return parser.parse_args()
r""""Contains definitions of the methods used by the _BaseDataLoaderIter workers to
collate samples fetched from dataset into Tensor(s).
These **needs** to be in global scope since Py2 doesn't support serializing
static methods.
"""
import torch
import re
# from torch._six import container_abcs, string_classes, int_classes
np_str_obj_array_pattern = re.compile(r'[SaUO]')
#
# def default_convert(data):
# r"""Converts each NumPy array data field into a tensor"""
# elem_type = type(data)
# if isinstance(data, torch.Tensor):
# return data
# elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
# and elem_type.__name__ != 'string_':
# # array of string classes and object
# if elem_type.__name__ == 'ndarray' \
# and np_str_obj_array_pattern.search(data.dtype.str) is not None:
# return data
# return torch.as_tensor(data)
# elif isinstance(data, container_abcs.Mapping):
# return {key: default_convert(data[key]) for key in data}
# elif isinstance(data, tuple) and hasattr(data, '_fields'): # namedtuple
# return elem_type(*(default_convert(d) for d in data))
# elif isinstance(data, container_abcs.Sequence) and not isinstance(data, string_classes):
# return [default_convert(d) for d in data]
# else:
# return data
default_collate_err_msg_format = (
"default_collate: batch must contain tensors, numpy arrays, numbers, "
"dicts or lists; found {}")
# def collate_temp(batch):
# r"""Puts each data field into a tensor with outer dimension batch size"""
#
# elem = batch[0]
# elem_type = type(elem)
# if isinstance(elem, torch.Tensor):
# out = None
# if torch.utils.data.get_worker_info() is not None:
# # If we're in a background process, concatenate directly into a
# # shared memory tensor to avoid an extra copy
# numel = sum([x.numel() for x in batch])
# storage = elem.storage()._new_shared(numel)
# out = elem.new(storage)
# # print("Starting Debug: ")
# # for i in range(len(batch)):
# # print(len(batch[i]))
#
# return torch.stack(batch, 0, out=out)
# # return batch
# elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
# and elem_type.__name__ != 'string_':
# if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
# # array of string classes and object
# if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
# raise TypeError(default_collate_err_msg_format.format(elem.dtype))
#
# return collate_temp([torch.as_tensor(b) for b in batch])
# elif elem.shape == (): # scalars
# return torch.as_tensor(batch)
# elif isinstance(elem, float):
# return torch.tensor(batch, dtype=torch.float64)
# elif isinstance(elem, int_classes):
# return torch.tensor(batch)
# elif isinstance(elem, string_classes):
# return batch
# elif isinstance(elem, container_abcs.Mapping):
# return {key: collate_temp([d[key] for d in batch]) for key in elem}
# elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
# return elem_type(*(collate_temp(samples) for samples in zip(*batch)))
# elif isinstance(elem, container_abcs.Sequence):
# # check to make sure that the elements in batch have consistent size
# it = iter(batch)
# elem_size = len(next(it))
# if not all(len(elem) == elem_size for elem in it):
# raise RuntimeError('each element in list of batch should be of equal size')
# transposed = zip(*batch)
# return [collate_temp(samples) for samples in transposed]
#
# raise TypeError(default_collate_err_msg_format.format(elem_type))
def evaluate_bert(model, test_loader):
model.eval()
total_loss = 0
acc = 0
# targets_list = []
# outputs_list = []
criterion = nn.CrossEntropyLoss()
for b, d in enumerate(test_loader):
input_ids = d[0].cuda()
# segment_ids = d[1].to(device)
# masked_pos = d[2].to(device)
# masked_tokens = d[3].to(device)
target = d[1].cuda()
with torch.no_grad():
logits_clsf = model(input_ids)
# loss_lm = criterion(logits_lm.transpose(1, 2), masked_tokens) # for masked LM
# loss_lm = (loss_lm.float()).mean()
loss_clsf = criterion(logits_clsf, target) # for sentence classification
loss = loss_clsf
total_loss += loss.item()
pred = torch.max(logits_clsf, axis=1)[1]
acc += torch.sum(pred == target).item()
final_loss = total_loss / len(test_loader)
return final_loss, acc/len(test_loader.dataset)
# return final_loss
def evaluate(model, test_loader):
model.eval()
total_loss = 0
acc = 0
# targets_list = []
# outputs_list = []
criterion = nn.CrossEntropyLoss()
pred_list = []
target_list = []
for b, d in enumerate(test_loader):
sm = d[0]
target = d[2]
sm = torch.t(sm.cuda()) # (T,B)
target = target.cuda()
with torch.no_grad():
output = model(sm) # (T,B,V)
loss = criterion(output, target)
total_loss += loss.item()
pred = torch.max(output, axis=1)[1]
pred_list.extend(pred.detach().cpu().numpy())
target_list.extend(target.detach().cpu().numpy())
acc += torch.sum(pred == target).item()
# targets_list.append(sm.detach().cpu().numpy())
# outputs_list.append(output.detach().cpu().numpy())
f1_macro = f1_score(target_list, pred_list, average='macro')
f1_micro = f1_score(target_list, pred_list, average='micro')
f1_avg = f1_score(target_list, pred_list, average='weighted')
f1_bin = matthews_corrcoef(target_list, pred_list)
auc = 0
# data = {}
# data['eval_targets'] = targets_list
# data['eval_outputs'] = outputs_list
final_loss = total_loss / len(test_loader)
return final_loss, acc/len(test_loader.dataset), f1_micro, f1_macro, f1_avg, f1_bin, auc, target_list, pred_list
train_loss_list = []
eval_loss_list = []
s1_loss_list = []
s2_loss_list = []
train_acc_list = []
val_acc_list = []
s1_acc_list = []
s2_acc_list = []
all_metrices = []
all_results = []
# resnet18 = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True)
# tensor = torch.rand([1, 1, 500, 224])
# model = ResNet(img_channels=1, num_layers=18, block=BasicBlock, num_classes=1000)
# model_sub = resnet18.ResNet(img_channels=1, num_layers=18, block=resnet18.BasicBlock, num_classes=1000)
def main():
# eval_data = []
args = parse_arguments()
assert torch.cuda.is_available()
# args.batch_size = 1
print('Loading dataset...')
with open('./data/DB1_data_allFolds', 'rb') as f:
a = pickle.load(f)
train_fold, valid_fold, s1_fold, s2_fold = a[0:4]
train_data = train_fold[0]
valid_data = valid_fold[0]
s1_data = s1_fold[0]
s2_data = s2_fold[0]
vocab = WordVocab.load_vocab(args.vocab)
dataset_train = Seq2seqDataset(train_data, vocab, seq_len=args.seq_len, num_classes=args.num_classes)
dataset_valid = Seq2seqDataset(valid_data, vocab, seq_len=args.seq_len, num_classes=args.num_classes)
dataset_s1 = Seq2seqDataset(s1_data, vocab, seq_len=args.seq_len, num_classes=args.num_classes)
dataset_s2 = Seq2seqDataset(s2_data, vocab, seq_len=args.seq_len, num_classes=args.num_classes)
# test_size = 10000 # 10000
# train, test = torch.utils.data.random_split(dataset, [len(dataset) - test_size, test_size])
train_loader = DataLoader(dataset_train, batch_size=args.batch_size, shuffle=True, num_workers=args.n_worker)
test_loader = DataLoader(dataset_valid, batch_size=args.batch_size, shuffle=True, num_workers=args.n_worker)
s1_loader = DataLoader(dataset_s1, batch_size=args.batch_size, shuffle=True, num_workers=args.n_worker)
s2_loader = DataLoader(dataset_s2, batch_size=args.batch_size, shuffle=True, num_workers=args.n_worker)
print('Train size:', len(dataset_train))
print('Test size:', len(dataset_valid))
print('s1 size:', len(dataset_s1))
print('s2 size:', len(dataset_s2))
# del dataset, train, test
torch.manual_seed(101)
torch.cuda.manual_seed(101)
torch.cuda.manual_seed_all(101)
model = TrfmSeq2seq(len(vocab), args.hidden, args.num_classes, len(vocab), args.n_layer, args.n_head).cuda()
# print(model)
maxlen = 500
n_segments = 2
d_k = d_v = 64 # dimension of K(=Q), V
d_ff = args.hidden
torch.manual_seed(101)
torch.cuda.manual_seed(101)
torch.cuda.manual_seed_all(101)
# model_bert = BERT1(len(vocab), args.hidden, maxlen, n_segments, args.n_layer, d_k, d_v, args.n_head, d_ff, args.num_classes).cuda()
# optimizer_bert = optim.Adam(model_bert.parameters(), lr=args.lr, weight_decay=1e-5) # Add weight decay weight_decay=1e-5 for L2 regularization
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-5) # Add weight decay weight_decay=1e-5 for L2 regularization
# criterion_bert = nn.CrossEntropyLoss()
criterion = nn.CrossEntropyLoss()
# criterion = nn.BCEWithLogitsLoss()
print(model)
print('Total parameters:', sum(p.numel() for p in model.parameters()))
best_loss = None
best_epoch = 0
best_val_acc = 0
for e in range(1, args.n_epoch):
print(">>> Epoch: ", e)
for b, d in tqdm(enumerate(train_loader)):
# break
sm = d[0].cuda()
target = d[2].cuda()
# break
# Training TRFM model:
# target = target.cuda()
optimizer.zero_grad()
output = model(torch.t(sm)) # (T,B,V)
# loss = F.nll_loss(output.view(-1, len(vocab)), sm.contiguous().view(-1), ignore_index=PAD)
loss = criterion(output, target)
# loss = F.multi(output, target)
loss.backward()
optimizer.step()
if b % 100 == 0:
print('TRFM: Train {:3d}: iter {:5d} | loss {}'.format(e, b, loss.item()))
# if b % 100 == 0:
# # Training Bert model:
# optimizer_bert.zero_grad()
# logits_clsf = model_bert(sm)
# # loss_lm = criterion(logits_lm.transpose(1, 2), masked_tokens) # for masked LM
# # loss_lm = (loss_lm.float()).mean()
# loss_clsf = criterion_bert(logits_clsf, target) # for sentence classification
# # loss = loss_clsf
# # loss = F.multi(output, target)
# loss_clsf.backward()
# optimizer_bert.step()
# if b % 100 == 0:
# print('BERT1: Train {:3d}: iter {:5d} | loss {}'.format(e, b, loss_clsf.item()))
# Evaluating loss for BERT model:
loss_train, acc_train, f1_micro, f1_macro, f1_avg, f1_bin, auc, gt_train, pred_train = evaluate(model,
train_loader,
)
train_loss_list.append(loss_train)
train_acc_list.append(acc_train)
# eval_data.append(data)
print('BERT: Train {:3d}: iter {:5d} | loss {} | acc {} | f1_micro {} | f1_macro {} '
'| f1_avg {} | f1_bin {} | auc {}'.format(e, b, loss_train, acc_train, f1_micro, f1_macro, f1_avg,
f1_bin, auc))
loss_val, acc_val, f1_micro1, f1_macro1, f1_avg1, f1_bin1, auc, gt_eval, pred_eval = evaluate(model,
test_loader,
)
eval_loss_list.append(loss_val)
val_acc_list.append(acc_val)
print('BERT: Val {:3d}: iter {:5d} | loss {} | acc {} | f1_micro {} | f1_macro {} '
'| f1_avg {} | f1_bin {} | auc {}'.format(e, b, loss_val, acc_val, f1_micro1, f1_macro1, f1_avg1,
f1_bin1, auc))
loss_s1, acc_s1, f1_micro2, f1_macro2, f1_avg2, f1_bin2, auc, gt_s1, pred_s1 = evaluate(model, s1_loader,
)
s1_loss_list.append(loss_s1)
s1_acc_list.append(acc_s1)
print('BERT: s1 {:3d}: iter {:5d} | loss {} | acc{} | f1_micro {} | f1_macro {} '
'| f1_avg {} | f1_bin {} | auc {}'.format(e, b, loss_s1, acc_s1, f1_micro2, f1_macro2, f1_avg2,
f1_bin2, auc))
loss_s2, acc_s2, f1_micro3, f1_macro3, f1_avg3, f1_bin3, auc, gt_s2, pred_s2 = evaluate(model, s2_loader,
)
s2_loss_list.append(loss_s2)
s2_acc_list.append(acc_s2)
print('BERT: s2 {:3d}: iter {:5d} | loss {} | acc{} | f1_micro {} | f1_macro {} '
'| f1_avg {} | f1_bin {} | auc {}'.format(e, b, loss_s2, acc_s2, f1_micro3, f1_macro3, f1_avg3,
f1_bin3, auc))
all_results.append([gt_train, pred_train, gt_eval, pred_eval, gt_s1, pred_s1, gt_s2, pred_s2])
if acc_val > best_val_acc:
best_val_acc = acc_val
best_epoch = e
# torch.save(model_bert.state_dict(), './model_complete/bert_complete0_%d_%d.pkl' % (e, b))
print("The Best Val accuracy: ", max(val_acc_list), " | Training acc: ",
train_acc_list[np.argmax(val_acc_list)], " | Epoch: ", np.argmax(val_acc_list) + 1)
print("Best s1 acc: ", max(s1_acc_list), " || Best s2 acc: ", max(s2_acc_list))
with open(r"./result/r_ablation_complete_trfm10_duel.pkl", "wb") as output_file:
pickle.dump(all_results, output_file)
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt as e:
print("[STOP]", e)