-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathablation_complete_bert_smile_reg_small.py
415 lines (350 loc) · 18.3 KB
/
ablation_complete_bert_smile_reg_small.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# %%
# code by Tae Hwan Jung(Jeff Jung) @graykode
# Reference : https://github.com/jadore801120/attention-is-all-you-need-pytorch
# https://github.com/JayParks/transformer, https://github.com/dhlee347/pytorchic-bert
'''
Modificaitons:
1 >>> Reducing learning rate to 1e-5
2 >>> Adding dropout of 0.1 in the encoder
3 >>> Increasing d_model to 256 and d_ff to 256
5 >>> Adding regularization
'''
import math
import re
from random import *
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import os
from build_vocab_bert import WordVocab
from dataset1 import Seq2seqDataset
import pickle
from torch.utils.data import DataLoader
from tqdm import tqdm
from sklearn.metrics import accuracy_score, roc_auc_score, f1_score, precision_score, recall_score, precision_recall_curve, auc, roc_curve
from sklearn.metrics import matthews_corrcoef
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_attn_pad_mask(seq_q, seq_k):
batch_size, len_q = seq_q.size()
batch_size, len_k = seq_k.size()
# eq(zero) is PAD token
pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # batch_size x 1 x len_k(=len_q), one is masking
return pad_attn_mask.expand(batch_size, len_q, len_k) # batch_size x len_q x len_k
def gelu(x):
"Implementation of the gelu activation function by Hugging Face"
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class Embedding(nn.Module):
def __init__(self, vocab_size, d_model, maxlen, n_segments):
super(Embedding, self).__init__()
self.tok_embed = nn.Embedding(vocab_size, d_model).to(device) # token embedding
self.pos_embed = nn.Embedding(maxlen, d_model).to(device) # position embedding
self.seg_embed = nn.Embedding(n_segments, d_model).to(device) # segment(token type) embedding
self.norm = nn.LayerNorm(d_model)
def forward(self, x, seg):
seq_len = x.size(1)
pos = torch.arange(seq_len, dtype=torch.long).to(device)
pos = pos.unsqueeze(0).expand_as(x) # (seq_len,) -> (batch_size, seq_len)
embedding = self.tok_embed(x) + self.pos_embed(pos) + self.seg_embed(seg)
return self.norm(embedding)
class ScaledDotProductAttention(nn.Module):
def __init__(self, d_k):
super(ScaledDotProductAttention, self).__init__()
self.d_k = d_k
def forward(self, Q, K, V, attn_mask):
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(self.d_k) # scores : [batch_size x n_heads x len_q(=len_k) x len_k(=len_q)]
scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is one.
attn = nn.Softmax(dim=-1)(scores)
context = torch.matmul(attn, V)
return context, attn
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, d_k, d_v, n_heads):
super(MultiHeadAttention, self).__init__()
self.W_Q = nn.Linear(d_model, d_k * n_heads)
self.W_K = nn.Linear(d_model, d_k * n_heads)
self.W_V = nn.Linear(d_model, d_v * n_heads)
self.n_heads = n_heads
self.d_k = d_k
self.d_v = d_v
self.d_model = d_model
self.lin1 = nn.Linear(self.n_heads * self.d_v, self.d_model).cuda()
self.lnorm = nn.LayerNorm(self.d_model)
def forward(self, Q, K, V, attn_mask):
# q: [batch_size x len_q x d_model], k: [batch_size x len_k x d_model], v: [batch_size x len_k x d_model]
residual, batch_size = Q, Q.size(0)
# (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
q_s = self.W_Q(Q).view(batch_size, -1, self.n_heads, self.d_k).transpose(1,2) # q_s: [batch_size x n_heads x len_q x d_k]
k_s = self.W_K(K).view(batch_size, -1, self.n_heads, self.d_k).transpose(1,2) # k_s: [batch_size x n_heads x len_k x d_k]
v_s = self.W_V(V).view(batch_size, -1, self.n_heads, self.d_v).transpose(1,2) # v_s: [batch_size x n_heads x len_k x d_v]
attn_mask = attn_mask.unsqueeze(1).repeat(1, self.n_heads, 1, 1) # attn_mask : [batch_size x n_heads x len_q x len_k]
# context: [batch_size x n_heads x len_q x d_v], attn: [batch_size x n_heads x len_q(=len_k) x len_k(=len_q)]
context, attn = ScaledDotProductAttention(self.d_k)(q_s, k_s, v_s, attn_mask)
context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.n_heads * self.d_v) # context: [batch_size x len_q x n_heads * d_v]
# print(context)
# print(context.is_cuda)
context = context.to(device)
# output = nn.Linear(self.n_heads * self.d_v, self.d_model)(context)
output = self.lin1(context)
# print("TAGLiNE")
total = output + residual
return self.lnorm(total), attn
# return nn.LayerNorm(self.d_model)(output + residual), attn # output: [batch_size x len_q x d_model]
class PoswiseFeedForwardNet(nn.Module):
def __init__(self, d_model, d_ff):
super(PoswiseFeedForwardNet, self).__init__()
self.fc1 = nn.Linear(d_model, d_ff)
self.fc2 = nn.Linear(d_ff, d_model)
def forward(self, x):
# (batch_size, len_seq, d_model) -> (batch_size, len_seq, d_ff) -> (batch_size, len_seq, d_model)
output = self.fc1(x)
output = gelu(output)
# print(output.shape)
# print(self.fc2)
output = self.fc2(output)
return output
# return self.fc2(gelu(self.fc1(x)))
class EncoderLayer(nn.Module):
def __init__(self, d_model, d_k, d_v, n_heads, d_ff):
super(EncoderLayer, self).__init__()
self.enc_self_attn = MultiHeadAttention(d_model, d_k, d_v, n_heads)
self.pos_ffn = PoswiseFeedForwardNet(d_model, d_ff)
def forward(self, enc_inputs, enc_self_attn_mask):
enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V
enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size x len_q x d_model]
return enc_outputs, attn
class BERT(nn.Module):
def __init__(self, vocab_size, d_model, maxlen, n_segments, n_layers, d_k, d_v, n_heads, d_ff, num_classes):
super(BERT, self).__init__()
self.embedding = Embedding(vocab_size, d_model, maxlen, n_segments)
# self.layers = nn.ModuleList([EncoderLayer(d_model, d_k, d_v, n_heads, d_ff) for _ in range(n_layers)])
self.encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=n_heads,
dim_feedforward=d_ff, dropout=0.1, batch_first=True)
self.encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=n_layers)
# self.layers = nn.ModuleList([nn.TransformerEncoderLayer(d_model=d_model, nhead=n_heads, dim_feedforward=d_ff, dropout=0) for _ in range(n_layers)])
self.fc = nn.Linear(d_model, d_model)
self.activ1 = nn.Tanh()
self.linear = nn.Linear(d_model, d_model)
self.activ2 = gelu
self.norm = nn.LayerNorm(d_model)
self.classifier = nn.Linear(d_model, num_classes)
# decoder is shared with embedding layer
embed_weight = self.embedding.tok_embed.weight
n_vocab, n_dim = embed_weight.size()
self.decoder = nn.Linear(n_dim, n_vocab, bias=False)
self.decoder.weight = embed_weight
self.decoder_bias = nn.Parameter(torch.zeros(n_vocab))
def forward(self, input_ids, segment_ids, masked_pos):
output = self.embedding(input_ids, segment_ids)
output = self.encoder(output)
# enc_self_attn_mask = get_attn_pad_mask(input_ids, input_ids)
# print(enc_self_attn_mask.shape)
# for layer in self.layers:
# output, enc_self_attn = layer(output, enc_self_attn_mask)
# output = layer(output)
# output : [batch_size, len, d_model], attn : [batch_size, n_heads, d_mode, d_model]
# it will be decided by first token(CLS)
h_pooled = self.activ1(self.fc(output[:, 0])) # [batch_size, d_model]
logits_clsf = self.classifier(h_pooled) # [batch_size, 2]
masked_pos = masked_pos[:, :, None].expand(-1, -1, output.size(-1)) # [batch_size, max_pred, d_model]
# get masked position from final output of transformer.
h_masked = torch.gather(output, 1, masked_pos) # masking position [batch_size, max_pred, d_model]
h_masked = self.norm(self.activ2(self.linear(h_masked)))
logits_lm = self.decoder(h_masked) + self.decoder_bias # [batch_size, max_pred, n_vocab]
return logits_lm, logits_clsf
def evaluate(model, test_loader, vocab):
model.eval()
total_loss = 0
acc = 0
# targets_list = []
# outputs_list = []
criterion = nn.CrossEntropyLoss()
pred_list = []
target_list = []
for b, d in enumerate(test_loader):
input_ids = d[0].to(device)
segment_ids = d[1].to(device)
masked_pos = d[2].to(device)
masked_tokens = d[3].to(device)
target = d[4].to(device)
with torch.no_grad():
logits_lm, logits_clsf = model(input_ids, segment_ids, masked_pos)
loss_lm = criterion(logits_lm.transpose(1, 2), masked_tokens) # for masked LM
loss_lm = (loss_lm.float()).mean()
loss_clsf = criterion(logits_clsf, target) # for sentence classification
loss = loss_lm + loss_clsf
total_loss += loss.item()
pred = torch.max(logits_clsf, axis=1)[1]
pred_list.extend(pred.detach().cpu().numpy())
target_list.extend(target.detach().cpu().numpy())
acc += torch.sum(pred == target).item()
f1_macro = f1_score(target_list, pred_list, average='macro')
f1_micro = f1_score(target_list, pred_list, average='micro')
f1_avg = f1_score(target_list, pred_list, average='weighted')
f1_bin = matthews_corrcoef(target_list, pred_list)
auc = 0
final_loss = total_loss / len(test_loader)
return final_loss, acc/len(test_loader.dataset), f1_micro, f1_macro, f1_avg, f1_bin, auc, target_list, pred_list
# return final_loss
train_loss_list = []
eval_loss_list = []
s1_loss_list = []
s2_loss_list = []
train_acc_list = []
val_acc_list = []
s1_acc_list = []
s2_acc_list = []
all_metrices = []
all_results = []
def main():
# BERT Parameters
maxlen = 500 # maximum of length
batch_size = 8
max_pred = 65 # max tokens of prediction
n_layers = 6 # number of Encoder of Encoder Layer
n_heads = 8 # number of heads in Multi-Head Attention
d_model = 256 # Embedding Size
d_ff = 256 # 4*d_model, FeedForward dimension
d_k = d_v = 64 # dimension of K(=Q), V
n_segments = 2
seq_len = 500
num_classes = 65
n_worker = 16
n_epoch = 150
learning_rate = 1e-5
dropout = 0.1
####################################################################################################################
## Data preparation ################################################################################################
####################################################################################################################
# eval_data = []
# args = parse_arguments()
assert torch.cuda.is_available()
# args.batch_size = 1
print('Loading dataset...')
with open('./data/DB1_data_allFolds', 'rb') as f:
a = pickle.load(f)
train_fold, valid_fold, s1_fold, s2_fold = a[0:4]
train_data = train_fold[0]
valid_data = valid_fold[0]
s1_data = s1_fold[0]
s2_data = s2_fold[0]
vocab = WordVocab.load_vocab('./data/vocab_db1_drugs.pkl')
vocab_size = len(vocab)
dataset_train = Seq2seqDataset(train_data, max_pred, vocab, seq_len=seq_len, num_classes=num_classes)
dataset_valid = Seq2seqDataset(valid_data, max_pred, vocab, seq_len=seq_len, num_classes=num_classes)
dataset_s1 = Seq2seqDataset(s1_data, max_pred, vocab, seq_len=seq_len, num_classes=num_classes)
dataset_s2 = Seq2seqDataset(s2_data, max_pred, vocab, seq_len=seq_len, num_classes=num_classes)
train_loader = DataLoader(dataset_train, batch_size=batch_size, shuffle=True, num_workers=n_worker)
test_loader = DataLoader(dataset_valid, batch_size=batch_size, shuffle=True, num_workers=n_worker)
s1_loader = DataLoader(dataset_s1, batch_size=batch_size, shuffle=True, num_workers=n_worker)
s2_loader = DataLoader(dataset_s2, batch_size=batch_size, shuffle=True, num_workers=n_worker)
print('Train size:', len(dataset_train))
print('Test size:', len(dataset_valid))
print('s1 size:', len(dataset_s1))
print('s2 size:', len(dataset_s2))
####################################################################################################################
# a = next(iter(train_loader))
# masked = []
# for i in range(len(input_ids[0])):
# if input_ids[0][i] == 3:
# masked.append(i)
model = BERT(vocab_size, d_model, maxlen, n_segments, n_layers, d_k, d_v, n_heads, d_ff, num_classes).to(device)
# print(next(model.parameters()))
# model = model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-5)
best_loss = None
best_epoch = 0
best_val_acc = 0
for e in range(1, n_epoch):
print(">>> Epoch: ", e)
for b, d in tqdm(enumerate(train_loader)):
# break
input_ids = d[0].to(device)
segment_ids = d[1].to(device)
masked_pos = d[2].to(device)
masked_tokens = d[3].to(device)
target = d[4].to(device)
optimizer.zero_grad()
logits_lm, logits_clsf = model(input_ids, segment_ids, masked_pos)
loss_lm = criterion(logits_lm.transpose(1, 2), masked_tokens) # for masked LM
loss_lm = (loss_lm.float()).mean()
loss_clsf = criterion(logits_clsf, target) # for sentence classification
loss = loss_lm + loss_clsf
# loss = F.multi(output, target)
loss.backward()
optimizer.step()
if b % 100 == 0:
print('Train {:3d}: iter {:5d} | loss {}'.format(e, b, loss.item()))
# if b % 100 == 0:
# Evaluating loss for BERT model:
loss_train, acc_train, f1_micro, f1_macro, f1_avg, f1_bin, auc, gt_train, pred_train = evaluate(model, train_loader, vocab)
train_loss_list.append(loss_train)
train_acc_list.append(acc_train)
# eval_data.append(data)
print('BERT: Train {:3d}: iter {:5d} | loss {} | acc {} | f1_micro {} | f1_macro {} '
'| f1_avg {} | f1_bin {} | auc {}'.format(e, b, loss_train, acc_train, f1_micro, f1_macro, f1_avg, f1_bin, auc))
loss_val, acc_val, f1_micro1, f1_macro1, f1_avg1, f1_bin1, auc, gt_eval, pred_eval = evaluate(model, test_loader, vocab)
eval_loss_list.append(loss_val)
val_acc_list.append(acc_val)
print('BERT: Val {:3d}: iter {:5d} | loss {} | acc {} | f1_micro {} | f1_macro {} '
'| f1_avg {} | f1_bin {} | auc {}'.format(e, b, loss_val, acc_val, f1_micro1, f1_macro1, f1_avg1, f1_bin1, auc))
loss_s1, acc_s1, f1_micro2, f1_macro2, f1_avg2, f1_bin2, auc, gt_s1, pred_s1 = evaluate(model, s1_loader, vocab)
s1_loss_list.append(loss_s1)
s1_acc_list.append(acc_s1)
print('BERT: s1 {:3d}: iter {:5d} | loss {} | acc{} | f1_micro {} | f1_macro {} '
'| f1_avg {} | f1_bin {} | auc {}'.format(e, b, loss_s1, acc_s1, f1_micro2, f1_macro2, f1_avg2,
f1_bin2, auc))
loss_s2, acc_s2, f1_micro3, f1_macro3, f1_avg3, f1_bin3, auc, gt_s2, pred_s2 = evaluate(model, s2_loader, vocab)
s2_loss_list.append(loss_s2)
s2_acc_list.append(acc_s2)
print('BERT: s2 {:3d}: iter {:5d} | loss {} | acc{} | f1_micro {} | f1_macro {} '
'| f1_avg {} | f1_bin {} | auc {}'.format(e, b, loss_s2, acc_s2, f1_micro3, f1_macro3, f1_avg3,
f1_bin3, auc))
all_results.append([gt_train, pred_train, gt_eval, pred_eval, gt_s1, pred_s1, gt_s2, pred_s2])
if acc_val > best_val_acc:
best_val_acc = acc_val
best_epoch = e
# torch.save(model_bert.state_dict(), './model_complete/bert_complete0_%d_%d.pkl' % (e, b))
print("The Best Val accuracy: ", max(val_acc_list), " | Training acc: ",
train_acc_list[np.argmax(val_acc_list)], " | Epoch: ", np.argmax(val_acc_list) + 1)
print("Best s1 acc: ", max(s1_acc_list), " || Best s2 acc: ", max(s2_acc_list))
with open(r"./result/r_ablation_complete_bert_smile_reg_small.pkl", "wb") as output_file:
pickle.dump(all_results, output_file)
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt as e:
print("[STOP]", e)
# batch = make_batch(sentences, token_list, word_dict, max_pred, vocab_size, maxlen, number_dict)
# input_ids, segment_ids, masked_tokens, masked_pos, isNext = map(torch.LongTensor, zip(*batch))
# input_ids = input_ids.to(device)
# segment_ids = segment_ids.to(device)
# masked_pos = masked_pos.to(device)
# isNext = isNext.to(device)
# masked_tokens = masked_tokens.to(device)
# for epoch in range(250):
# optimizer.zero_grad()
# logits_lm, logits_clsf = model(input_ids, segment_ids, masked_pos)
# loss_lm = criterion(logits_lm.transpose(1, 2), masked_tokens) # for masked LM
# loss_lm = (loss_lm.float()).mean()
# loss_clsf = criterion(logits_clsf, isNext) # for sentence classification
# loss = loss_lm + loss_clsf
# if (epoch + 1) % 10 == 0:
# print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
# loss.backward()
# optimizer.step()
#
# # Predict mask tokens ans isNext
# input_ids, segment_ids, masked_tokens, masked_pos, isNext = map(torch.LongTensor, zip(batch[0]))
# print(text)
# print([number_dict[w.item()] for w in input_ids[0] if number_dict[w.item()] != '[PAD]'])
#
# logits_lm, logits_clsf = model(input_ids, segment_ids, masked_pos)
# logits_lm = logits_lm.data.max(2)[1][0].data.numpy()
# print('masked tokens list : ',[pos.item() for pos in masked_tokens[0] if pos.item() != 0])
# print('predict masked tokens list : ',[pos for pos in logits_lm if pos != 0])
#
# logits_clsf = logits_clsf.data.max(1)[1].data.numpy()[0]
# print('isNext : ', True if isNext else False)
# print('predict isNext : ',True if logits_clsf else False)