-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
85 lines (68 loc) · 2.85 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from flask import Flask,render_template,Response
import tensorflow as tf
import cv2
import numpy as np
import os
from playsound import playsound
app=Flask(__name__)
cv2_base_dir = os.path.dirname(os.path.abspath(cv2.__file__))
haar_face_model = os.path.join(cv2_base_dir, 'data/haarcascade_frontalface_default.xml')
haar_eyes_model = os.path.join(cv2_base_dir, 'data/haarcascade_eye.xml')
model=tf.keras.models.load_model('model.h5')
# alarm_sound=False
def generate_frames():
camera=cv2.VideoCapture(0)
while True:
## read the camera frame
success,frame=camera.read()
if not success:
break
else:
detector=cv2.CascadeClassifier(haar_face_model)
eye_cascade = cv2.CascadeClassifier(haar_eyes_model)
faces=detector.detectMultiScale(frame,1.1,7)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#Draw the rectangle around each face
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = frame[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray, 1.1, 3)
for (ex, ey, ew, eh) in eyes:
# text = str(model.predict(frame[ey:ey+eh,ex:ex+ew]))
cv2.rectangle(roi_color, (ex, ey), (ex+ew, ey+eh), (0, 0, 255), 2)
final_image = cv2.resize(roi_color, (224,224))
final_image = np.expand_dims (final_image,axis =0) ## need fourth dimension
final_image= final_image/255.0
Predictions = model.predict(final_image)
if (np.round(Predictions)>0):
text = "Awake"
# alarm_sound=False
else:
text = "Drowsy"
# alarm_sound=True
# playsound('./alarm/alarm.wav')
origin = (x,y)
# text = drowsiness_model(frame,eyes,model)
cv2.putText(frame, text, origin , fontFace = cv2.FONT_HERSHEY_COMPLEX, fontScale = 2, color = (0,255,0))
ret, buffer = cv2.imencode('.jpg', frame)
if cv2.waitKey(100) == ord('q'):
break
frame = buffer.tobytes()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
# Routes
@app.route('/')
def index():
return render_template('feed.html')
@app.route('/about')
def about():
return render_template('about.html')
@app.route('/team')
def team():
return render_template('team.html')
@app.route('/video_feed')
def video_feed():
return Response(generate_frames(),mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__=="__main__":
app.run(debug=True)