-
Notifications
You must be signed in to change notification settings - Fork 0
/
from_emotion.py
141 lines (114 loc) · 5.79 KB
/
from_emotion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import streamlit as st
from keras.models import load_model
import cv2
import numpy as np
import playlist_generator
import track_info_generator
from colorama import init, Fore
import spotipy
from spotipy.oauth2 import SpotifyClientCredentials
import configparser
import sys
import ast
import time
import json
def app():
try:
loaded_model = load_model("./models/model_50epochs.h5")
print(
f"\n{Fore.GREEN}Emotion Detection Model has been loaded successfully !!!")
except:
print(
f"\n{Fore.RED}Failed to load the model, Please check the logs for issue.")
try:
config = configparser.ConfigParser()
config.read('./configs/config.cfg')
SPOTIPY_CLIENT_ID = config.get('SPOTIFY', 'SPOTIPY_CLIENT_ID')
SPOTIPY_CLIENT_SECRET = config.get('SPOTIFY', 'SPOTIPY_CLIENT_SECRET')
SPOTIPY_REDIRECT_URI = config.get('SPOTIFY', 'SPOTIPY_REDIRECT_URI')
sp = spotipy.Spotify(auth_manager=SpotifyClientCredentials(
client_id=SPOTIPY_CLIENT_ID, client_secret=SPOTIPY_CLIENT_SECRET))
print(f"\n{Fore.GREEN}Connected to Spotify API succesfully !!!")
except Exception as e:
print(
f"\n{Fore.RED}Failed to connect to Spotify API, Try Re-Running the app....")
sys.exit(1)
st.markdown(
"<h1 style='text-align:center; color:#1cbc55'>YOUR MOOD, YOUR MUSIC</h1>", unsafe_allow_html=True)
# st.markdown("<h5 style='text-align:center'>The recommendation engine will scan your face and predict your mood, and accordingly will generate music library.</h5>", unsafe_allow_html=True)
col1, col2 = st.columns([2, 1])
with col1:
number_of_songs = int(st.number_input(
"NUMBER OF SONGS", min_value=3, max_value=15))
with col2:
st.write("Restrict inappropriate tracks")
explicit = st.toggle(label="Allow Explicit", value=True)
image_buffer = st.camera_input(
label="Upload a snapshot of your face."
)
filt_col = ['acousticness', 'danceability',
'energy', 'loudness', 'tempo', 'valence']
with open("./data/mood_parameters_narrow.json", "r") as file:
mood_parameters = json.load(file)
if image_buffer is not None:
bytes_data = image_buffer.getvalue()
cv2_img = cv2.imdecode(np.frombuffer(
bytes_data, np.uint8), cv2.IMREAD_GRAYSCALE)
cv2_img = cv2.resize(cv2_img, (48, 48))
cv2_img = np.expand_dims(cv2_img, axis=0) / 255
predictions = loaded_model.predict(cv2_img)
mood = np.argmax(predictions)
mood_value = max(predictions[0])
mood_mapping = {
0: ("happy", mood_parameters["happy"]),
1: ("sad", mood_parameters["sad"]),
2: ("chill", mood_parameters["neutral"])
}
mood_str, mood_arr = mood_mapping.get(mood, ("unknown", []))
mood_input = {
'acousticness': mood_arr[0],
'danceability': mood_arr[1],
'energy': mood_arr[2],
'loudness': mood_arr[3],
'tempo': mood_arr[4],
'valence': mood_arr[5]
}
print(
f"\n{Fore.CYAN}Detected Mood from the snapshot : {mood_str} \n Scores: {predictions[0]}")
recommendations = playlist_generator.generate_playlist_from_mood(
[mood_input], num_recommendations=number_of_songs, explicit=explicit)
recommendations = track_info_generator.apply_cover_images(
sp, recommendations)
recommendations = track_info_generator.apply_preview_url(
sp, recommendations)
recommendations = recommendations[[
'name', 'artists', 'release_date', 'explicit', 'duration_ms', 'album_cover', 'preview_url']]
print(f"\n{Fore.LIGHTCYAN_EX}{recommendations}")
st.markdown("<h3 style='text-align:center; color:#1cbc55'>RECOMMENDATIONS</h3>",
unsafe_allow_html=True)
for index, row in recommendations.iterrows():
artists = ast.literal_eval(row['artists'])
artists = ', '.join(list(artists))
duration = track_info_generator.convert_msTo_min(
row['duration_ms'])
song_card = """
<div style="background-color: #121313; padding:30px; overflow:hidden; margin-bottom:20px; border-radius: 30px;">
<div style='display: inline-block; margin-right: 30px;'>
<h5 style='color:#1cbc55'>{1}</h5>
<h6>{2}</h6>
<p>Release Date : {4}</p>
<p>Duration : {5}</p>
<audio controls>
<source src="{3}" type="audio/mp3">
</audio>
</div>
<div style='float:right'>
<img src='{0}' height='150px' >
""".format(row['album_cover'], row['name'], artists, row['preview_url'], row['release_date'], duration)
if row['explicit'] == 0:
song_card = song_card + "</div></div>"
else:
song_card = song_card + "<br><img src='' style='margin-top: 25px; float:right'></div></div>"
with st.expander(row['name']+" - "+artists):
st.write(song_card, unsafe_allow_html=True)
time.sleep(0.75)