-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
110 lines (92 loc) · 3.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import torch.nn as nn
class Net_28(nn.Module):
def __init__(self, in_channels, num_classes):
super(Net_28, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(in_channels, 16, kernel_size=3),
nn.GroupNorm(4, 16),
nn.ReLU())
self.layer2 = nn.Sequential(
nn.Conv2d(16, 16, kernel_size=3),
nn.GroupNorm(4, 16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer3 = nn.Sequential(
nn.Conv2d(16, 64, kernel_size=3),
nn.GroupNorm(16, 64),
nn.ReLU())
self.layer4 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3),
nn.GroupNorm(16, 64),
nn.ReLU())
self.layer5 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.GroupNorm(16, 64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = nn.Sequential(
nn.Linear(64 * 4 * 4, 128),
nn.ReLU(),
nn.Linear(128, 128),
nn.ReLU(),
nn.Linear(128, num_classes))
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
class Net_224(nn.Module):
def __init__(self, in_channels, num_classes):
super(Net_224, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(in_channels, 16, kernel_size=3),
nn.GroupNorm(4, 16),
nn.ReLU())
self.layer2 = nn.Sequential(
nn.Conv2d(16, 16, kernel_size=3),
nn.GroupNorm(4, 16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer3 = nn.Sequential(
nn.Conv2d(16, 64, kernel_size=3),
nn.GroupNorm(16, 64),
nn.ReLU())
self.layer4 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3),
nn.GroupNorm(16, 64),
nn.ReLU())
self.layer5 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.GroupNorm(16, 64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer6 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3),
nn.GroupNorm(32, 128),
nn.ReLU())
self.layer7 = nn.Sequential(
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.GroupNorm(32, 128),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = nn.Sequential(
nn.Linear(128 * 25 * 25, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, num_classes))
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
x = self.layer6(x)
x = self.layer7(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x