-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload.py
37 lines (25 loc) · 1.15 KB
/
load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
from torch.utils.data import DataLoader
from torchvision import transforms
from dataset import MedMNISTDataset
from config import CONFIG
def load_data(data_path):
data = np.load(data_path)
train_images = data['train_images']
train_labels = data['train_labels']
test_images = data['test_images']
test_labels = data['test_labels']
data_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[.5], std=[.5])
])
train_dataset = MedMNISTDataset(train_images, train_labels, transform=data_transform)
test_dataset = MedMNISTDataset(test_images, test_labels, transform=data_transform)
train_loader = DataLoader(train_dataset, batch_size=CONFIG['batch_size'], shuffle=True, drop_last=False)
test_loader = DataLoader(test_dataset, batch_size=CONFIG['batch_size'], shuffle=True, drop_last=False)
class_counts = {
'train': np.bincount(train_labels.flatten()),
'test': np.bincount(test_labels.flatten())
}
channels = train_images.shape[-1] if len(train_images.shape) == 4 else 1
return train_loader, test_loader, class_counts, channels