-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathword2vec_poc_nce_train.py
345 lines (230 loc) · 9.66 KB
/
word2vec_poc_nce_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Basic word2vec example."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
import os
import sys
import argparse
import random
from tempfile import gettempdir
import zipfile
import datetime
import numpy as np
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector
current_path = os.path.dirname(os.path.realpath(sys.argv[0]))
parser = argparse.ArgumentParser()
parser.add_argument(
'--log_dir',
type=str,
default=os.path.join(current_path, 'log'),
help='The log directory for TensorBoard summaries.')
FLAGS, unparsed = parser.parse_known_args()
if not os.path.exists(FLAGS.log_dir):
os.makedirs(FLAGS.log_dir)
url = 'http://mattmahoney.net/dc/'
# pylint: disable=redefined-outer-name
def maybe_download(filename, expected_bytes):
"""Download a file if not present, and make sure it's the right size."""
local_filename = os.path.join(gettempdir(), filename)
if not os.path.exists(local_filename):
local_filename, _ = urllib.request.urlretrieve(url + filename,
local_filename)
statinfo = os.stat(local_filename)
if statinfo.st_size == expected_bytes:
print('Found and verified', filename)
else:
print(statinfo.st_size)
raise Exception('Failed to verify ' + local_filename +
'. Can you get to it with a browser?')
return local_filename
filename = maybe_download('text8.zip', 31344016)
# Read the data into a list of strings.
def read_data(filename):
"""Extract the first file enclosed in a zip file as a list of words."""
with zipfile.ZipFile(filename) as f:
data = tf.compat.as_str(f.read(f.namelist()[0])).split()
return data
vocabulary = read_data(filename)
print('Data size', len(vocabulary))
vocabulary_size = 50000
def build_dataset(words, n_words):
"""Process raw inputs into a dataset."""
count = [['UNK', -1]]
count.extend(collections.Counter(words).most_common(n_words - 1))
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
data = list()
unk_count = 0
for word in words:
index = dictionary.get(word, 0)
if index == 0: # dictionary['UNK']
unk_count += 1
data.append(index)
count[0][1] = unk_count
reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reversed_dictionary
data, count, dictionary, reverse_dictionary = build_dataset(
vocabulary, vocabulary_size)
del vocabulary # Hint to reduce memory.
print('Most common words (+UNK)', count[:5])
print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])
data_index = 0
def generate_batch(batch_size, num_skips, skip_window):
global data_index
assert batch_size % num_skips == 0
assert num_skips <= 2 * skip_window
batch = np.ndarray(shape=(batch_size), dtype=(np.int32, 2))
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
span = 2 * skip_window + 2
buffer = collections.deque(maxlen=span) # pylint: disable=redefined-builtin
if data_index + span > len(data):
data_index = 0
buffer.extend(data[data_index:data_index + span])
data_index += span
for i in range(batch_size // num_skips):
context_words = [w for w in range(span) if (w != skip_window and w != (skip_window + 1))]
words_to_use = random.sample(context_words, num_skips)
for j, context_word in enumerate(words_to_use):
batch[i * num_skips + j] = (buffer[skip_window], buffer[skip_window + 1])
labels[i * num_skips + j, 0] = buffer[context_word]
if data_index == len(data):
buffer.extend(data[0:span])
data_index = span
else:
buffer.append(data[data_index])
data_index += 1
data_index = (data_index + len(data) - span) % len(data)
return batch, labels
batch, labels = generate_batch(batch_size=12, num_skips=2, skip_window=3)
# Step 4: Build and train a skip-gram model.
# ***************************************************************************************** #
batch_size = 400
embedding_size = 400 # Dimension of the embedding vector.
skip_window = 2 # How many words to consider left and right.
num_skips = 4 # How many times to reuse an input to generate a label.
num_sampled = 300 # Number of negative examples to sample.
num_steps = 200501
learning_rate = 0.05
# ***************************************************************************************** #
###############
os.environ["CUDA_VISIBLE_DEVICES"] = '0' #use GPU with ID=0
config1 = tf.ConfigProto()
config1.allow_soft_placement=True
config1.gpu_options.allocator_type = 'BFC'
config1.gpu_options.per_process_gpu_memory_fraction = 0.95 # maximun alloc gpu50% of MEM
config1.gpu_options.allow_growth = True #allocate dynamically
################
validationWordList = ['six','nine','he','computer','france','good','company','bed','cat','game','tree','and','book','man','red','car','football','green','winter','apple']
validationWordIndices = []
for i in range(len(validationWordList)):
validationWordIndices.append(dictionary[validationWordList[i]])
valid_size = 20
valid_examples = validationWordIndices
graph = tf.Graph()
with graph.as_default():
loaded_embeddings = np.load('w2v_embeddings.npy')
# Input data.
with tf.name_scope('inputs'):
train_inputs0 = tf.placeholder(tf.int32, shape=[batch_size])
train_inputs1 = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
with tf.name_scope('embeddings'):
embeddings = tf.constant(loaded_embeddings)
embed0 = tf.nn.embedding_lookup(embeddings, train_inputs0)
embed1 = tf.nn.embedding_lookup(embeddings, train_inputs1)
embed = embed0 + embed1
with tf.name_scope('weights'):
nce_weights = tf.Variable(
tf.truncated_normal(
[vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
with tf.name_scope('biases'):
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
with tf.name_scope('loss'):
loss = tf.reduce_mean(
tf.nn.nce_loss(
weights=nce_weights,
biases=nce_biases,
labels=train_labels,
inputs=embed,
num_sampled=num_sampled,
num_classes=vocabulary_size))
tf.summary.scalar('loss', loss)
with tf.name_scope('optimizer'):
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9).minimize(loss)
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings,
valid_dataset)
similarity = tf.matmul(
valid_embeddings, normalized_embeddings, transpose_b=True)
merged = tf.summary.merge_all()
init = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session(config=config1, graph=graph) as session:
writer = tf.summary.FileWriter(FLAGS.log_dir, session.graph)
init.run()
print('Initialized')
average_loss = 0
for step in xrange(num_steps):
batch_inputs, batch_labels = generate_batch(batch_size, num_skips,
skip_window)
batch_inputs0 = [i[0] for i in batch_inputs]
batch_inputs1 = [i[1] for i in batch_inputs]
feed_dict = {train_inputs0: batch_inputs0, train_inputs1: batch_inputs1, train_labels: batch_labels}
run_metadata = tf.RunMetadata()
_, summary, loss_val = session.run(
[optimizer, merged, loss],
feed_dict=feed_dict,
run_metadata=run_metadata)
average_loss += loss_val
writer.add_summary(summary, step)
if step == (num_steps - 1):
writer.add_run_metadata(run_metadata, 'step%d' % step)
if step % 2000 == 0:
if step > 0:
average_loss /= 2000
print('Average loss at step ', step, ': ', average_loss)
average_loss = 0
if step % 20000 == 0:
sim = similarity.eval()
for i in xrange(valid_size):
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8
nearest = (-sim[i, :]).argsort()[1:top_k + 1]
log_str = 'Nearest to %s:' % valid_word
for k in xrange(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str = '%s %s,' % (log_str, close_word)
print(log_str)
final_embeddings = normalized_embeddings.eval()
nce_weights_to_store = nce_weights.eval()
nce_bias_to_store = nce_biases.eval()
timestr = str(datetime.datetime.now()).split('.')[0].replace(':', '_').replace(' ', '_')
np.save('w2v_poc_nce_weights.npy', nce_weights_to_store)
np.save('w2v_poc_nce_bias.npy', nce_bias_to_store)
print('saved weights and biases in')
print('w2v_poc_nce_weights.npy')
print('w2v_poc_nce_bias.npy')
writer.close()