-
Notifications
You must be signed in to change notification settings - Fork 1
/
chaos.py
195 lines (128 loc) · 4.14 KB
/
chaos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import math
from fuzzywuzzy import fuzz
import random
import string
from difflib import *
def similar(a, b):
return SequenceMatcher(None, a, b).ratio()
class Agent:
def __init__(self, length):
self.params = [random.uniform(1,4),random.uniform(0.1,4)] #(a,d)
self.fitness = -1
def __str__(self):
return 'Params: ' + str(self.params) + ' Fitness: ' + str(self.fitness)
def init_agents(population, length):
return [Agent(length) for _ in range(population)]
def ga():
agents = init_agents(population, in_str_len)
for generation in range(generations):
print('Generation: ' + str(generation))
temp_fitness = []
agents = fitness(agents)
for agent in agents:
temp_fitness.append(agent.fitness)
# print(temp_fitness)
current_max_fitness = max(temp_fitness)
count = temp_fitness.count(current_max_fitness)
print('Current_max_fitness',current_max_fitness)
print('Count: ',count)
if count/len(agents) >= 0.5 and current_max_fitness >= 90:
print('Bazinga!')
break
agents = selection(agents)
agents = crossover(agents)
agents = mutation(agents)
def ani_jackard(s1,s2):
str1 = [ord(i) for i in s1]
str2 = [ord(i) for i in s2]
str1 = set(str1)
str2 = set(str2)
score = (str1 & str2)
score_u = str1|str2
return 100-(len(score)/len(score_u))*100
def fitness(agents):
for agent in agents:
a = agent.params[0]
d = agent.params[1]
cipher = encrypt(plaintext,a,d)
# agent.fitness = 100-fuzz.ratio(plaintext,cipher)
agent.fitness = ani_jackard(plaintext,cipher)
return agents
def selection(agents):
agents = sorted(agents, key=lambda agent: agent.fitness, reverse=True)
print('\n'.join(map(str, agents)))
agents = agents[:int(0.2 * len(agents))]
return agents
def crossover(agents):
offspring = []
for _ in range((population - len(agents)) // 2):
parent1 = random.choice(agents)
parent2 = random.choice(agents)
child1 = Agent(2)
child2 = Agent(2)
# split = random.randint(0, in_str_len)
child1.params = [parent1.params[0],parent2.params[1]]
child2.params = [parent2.params[0],parent1.params[1]]
offspring.append(child1)
offspring.append(child2)
agents.extend(offspring)
return agents
def mutation(agents):
for agent in agents:
step_a = random.uniform(-0.2,0.2)
step_d = random.uniform(-0.2,0.2)
if random.uniform(0.0, 1.0) <= 0.1:
agent.params[0] += step_a
agent.params[1] += step_d
return agents
def chaotic_map(n,x_0,y_0,a,d):
# d = 0.3
# a = 2.5
x=[]
x.append(x_0)
y = []
y.append(y_0)
for i in range(n-1):
x.append((x[i]+d+(a*math.sin(2*math.pi*y[i])))%1)
y.append(1 - a*pow(x[i],2) + y[i])
return (x,y)
def float_to_shuffled_ints(x,y):
x_sorted = sorted(x, reverse=True)
y_sorted = sorted(y, reverse=True)
shuffled_x = []
for x_val in x:
if x_val in x_sorted:
i = x_sorted.index(x_val)
shuffled_x.append(i)
shuffled_y = []
for y_val in y:
if y_val in y_sorted:
i = y_sorted.index(y_val)
shuffled_y.append(i)
# print('shuffled_x = ',shuffled_x)
# print('shuffled_y = ',shuffled_y)
key = []
for i in shuffled_x:
key.append(shuffled_y[i])
return key
def encrypt(plaintext,a,d):
ascii_lst = [ord(i) for i in plaintext]
n = len(ascii_lst)
ascii_avg = sum(ascii_lst)/n
x_0 = ascii_avg/max(ascii_lst)
y_0 = 0.2
(x,y) = chaotic_map(n,x_0,y_0,a,d)
private_key = float_to_shuffled_ints(x,y)
# print('Private Key = ',private_key)
ciphertext = []
for i in range(len(ascii_lst)):
ciphertext.append(chr(ascii_lst[i]+private_key[i]))
# print('CipherText = ',ciphertext)
return ''.join(ciphertext)
in_str = None
in_str_len = None
population = 20
generations = 100000
# plaintext = input('Enter Message: ')
plaintext = 'abcdefghij'*100
ga()