Skip to content

Commit

Permalink
Merge pull request #2568 from abilashkumar/rekognition-s3-detectlabel…
Browse files Browse the repository at this point in the history
…s-python

new serverless pattern - rekognition-s3-detectlabels-python
  • Loading branch information
julianwood authored Jan 27, 2025
2 parents 67db4e3 + 8699fa3 commit 024612e
Show file tree
Hide file tree
Showing 5 changed files with 331 additions and 0 deletions.
63 changes: 63 additions & 0 deletions rekognition-s3-detectlabels-python/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# Amazon S3 to Amazon Rekognition through AWS EventBridge

This pattern demonstrates how to create an Amazon S3 bucket that triggers an AWS Lambda function via Amazon EventBridge upon object upload. The Lambda function detects labels in an image using Amazon Rekognition. The Lambda function is built using Python.

Learn more about this pattern at Serverless Land Patterns: https://serverlessland.com/patterns/rekognition-s3-detectlabels-python

Important: this application uses various AWS services and there are costs associated with these services after the Free Tier usage - please see the [AWS Pricing page](https://aws.amazon.com/pricing/) for details. You are responsible for any AWS costs incurred. No warranty is implied in this example.

## Requirements

* [Create an AWS account](https://portal.aws.amazon.com/gp/aws/developer/registration/index.html) if you do not already have one and log in. The IAM user that you use must have sufficient permissions to make necessary AWS service calls and manage AWS resources.
* [AWS CLI](https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html) installed and configured
* [Git Installed](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git)
* [AWS Serverless Application Model](https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html) (AWS SAM) installed

## Deployment Instructions

1. Create a new directory, navigate to that directory in a terminal and clone the GitHub repository:
```
git clone https://github.com/aws-samples/serverless-patterns
```
1. Change directory to the pattern directory:
```
cd rekognition-s3-detectlabels-python
```
1. From the command line, use AWS SAM to deploy the AWS resources for the pattern as specified in the template.yml file:
```
sam deploy --guided
```
1. During the prompts:
* Enter a stack name
* Enter the desired AWS Region
* Allow SAM CLI to create IAM roles with the required permissions.
Once you have run `sam deploy --guided` mode once and saved arguments to a configuration file (samconfig.toml), you can use `sam deploy` in future to use these defaults.
1. Note the outputs from the SAM deployment process. These contain the resource names and/or ARNs which are used for testing.
## How it works
The CloudFormation template creates two Amazon S3 buckets (source and destination) along with an AWS Lambda function (written in Python) and an Amazon EventBridge event. The Lambda function is triggered by EventBridge, which listens for object uploads in the S3 source bucket. The Lambda function makes a `DetectLabels` API call to Amazon Rekognition to detect labels in an image and stores the output in the destination S3 bucket.
## Testing
Upload the file (document/image) to the input S3 `<STACK_NAME>-input-bucket-<AWS_ACCOUNTID>` bucket via the console or use the `PutObject` API call below:
```
aws s3api put-object --bucket <INPUT_BUCKET_NAME> --key <IMAGE_FILE> --body /path/to/your/<IMAGE_FILE>
```
The output of the operation can be downloaded from the output S3 bucket <STACK_NAME>-output-bucket-<AWS_ACCOUNTID>.
Replace the parameters in the above command appropriately.
## Cleanup
1. Delete the stack
```bash
sam delete
```
----
Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: MIT-0
59 changes: 59 additions & 0 deletions rekognition-s3-detectlabels-python/example-pattern.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
{
"title": "S3 to Rekognition using EventBridge",
"description": "SAM template for S3 trigger to Lambda for detecting labels in an image using Rekognition and EventBridge",
"language": "python",
"level": "200",
"framework": "SAM",
"introBox": {
"headline": "How it works",
"text": [
"This pattern demonstrates how to creates two S3 buckets (source and destination) which when uploaded with an object invokes a Lambda function through EventBridge and detects labels in an image using Amazon Rekognition.",
"Once a file is uploaded to an S3 bucket, it is listened by the EventBridge which further invokes the lambda function",
"The lambda function writes the output of the detected labels using Rekognition to the destination S3 bucket."
]
},
"gitHub": {
"template": {
"repoURL": "https://github.com/aws-samples/serverless-patterns/tree/main/rekognition-s3-detectlabels-python",
"templateURL": "serverless-patterns/rekognition-s3-detectlabels-python",
"projectFolder": "rekognition-s3-detectlabels-python",
"templateFile": "template.yaml"
}
},
"resources": {
"bullets": [
{
"text": "Detecting Labels using Rekognition",
"link": "https://docs.aws.amazon.com/rekognition/latest/dg/labels-detect-labels-image.html"
},
{
"text": "Amazon Rekognition",
"link": "https://aws.amazon.com/rekognition/"
}
]
},
"deploy": {
"text": [
"sam deploy"
]
},
"testing": {
"text": [
"See the GitHub repo for detailed testing instructions."
]
},
"cleanup": {
"text": [
"Delete the stack: <code>cdk delete</code>."
]
},
"authors": [
{
"name": "Abilashkumar P C",
"image": "https://drive.google.com/file/d/1bxOh_WBw8J_xEqvT-qRezH8WXqSBPI24/view?usp=sharing",
"bio": "Sr. Cloud Support Engineer @ AWS",
"linkedin": "abilashkumar-p-c"
}
]
}

Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
{
"title": "S3 to Rekognition using EventBridge",
"description": "SAM template for Amazon S3 trigger to AWS Lambda for detecting labels in an image using Amazon Rekognition and Amazon EventBridge",
"language": "Python",
"level": "200",
"framework": "SAM",
"introBox": {
"headline": "How it works",
"text": [
"This pattern demonstrates how to creates two S3 buckets (source and destination) which when uploaded with an object invokes a Lambda function through EventBridge and detects labels in an image using Amazon Rekognition.",
"Once a file is uploaded to an S3 bucket, it is listened by the EventBridge which further invokes the lambda function",
"The lambda function writes the output of the detected labels using Rekognition to the destination S3 bucket."
]
},
"gitHub": {
"template": {
"repoURL": "https://github.com/aws-samples/serverless-patterns/tree/main/rekognition-s3-detectlabels-python",
"templateURL": "serverless-patterns/rekognition-s3-detectlabels-python",
"projectFolder": "rekognition-s3-detectlabels-python",
"templateFile": "template.yaml"
}
},
"resources": {
"bullets": [
{
"text": "Detecting Labels using Rekognition",
"link": "https://docs.aws.amazon.com/rekognition/latest/dg/labels-detect-labels-image.html"
},
{
"text": "Amazon Rekognition",
"link": "https://aws.amazon.com/rekognition/"
}
]
},
"deploy": {
"text": ["sam deploy"]
},
"testing": {
"text": ["See the GitHub repo for detailed testing instructions."]
},
"cleanup": {
"text": ["Delete the stack: <code>cdk delete</code>."]
},
"authors": [
{
"name": "Abilashkumar P C",
"image": "https://drive.google.com/file/d/1bxOh_WBw8J_xEqvT-qRezH8WXqSBPI24/view?usp=sharing",
"bio": "Sr. Cloud Support Engineer @ AWS",
"linkedin": "abilashkumar-p-c"
}
],
"patternArch": {
"icon1": {
"x": 20,
"y": 50,
"service": "s3",
"label": "Amazon S3"
},
"icon2": {
"x": 50,
"y": 50,
"service": "lambda",
"label": "AWS Lambda"
},
"icon3": {
"x": 80,
"y": 50,
"service": "rekognition",
"label": "Amazon Rekognition"
},
"line1": {
"from": "icon1",
"to": "icon2",
"label": ""
},
"line2": {
"from": "icon2",
"to": "icon3",
"label": ""
}
}
}
42 changes: 42 additions & 0 deletions rekognition-s3-detectlabels-python/src/lambda_function.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
import boto3
import json
import os
s3 = boto3.client('s3')
rekognition = boto3.client('rekognition')

def handler(event, context):
# Extract bucket and key from the EventBridge event
detail = event['detail']
bucket = detail['bucket']['name']
key = detail['object']['key']

# Call Rekognition to detect faces
response = rekognition.detect_labels(
Image={
'S3Object': {
'Bucket': bucket,
'Name': key
}
},
MaxLabels=15
)

# Write the Rekognition output to the output bucket
output_key = f"rekognition-output-{key}"
output_key = output_key[:output_key.rfind('.')]
output_key = output_key + ".json"
print(output_key)

labelDetection=response['Labels']
print(response)

s3.put_object(
Bucket=os.environ['OUTPUT_BUCKET'],
Key=output_key,
Body=json.dumps(labelDetection)
)

return {
'statusCode': 200,
'body': json.dumps('Label detection successfully')
}
85 changes: 85 additions & 0 deletions rekognition-s3-detectlabels-python/template.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: 'SAM template for S3 trigger to Lambda for detecting labels in an image using Rekognition and EventBridge'

Resources:
# Input S3 bucket
InputBucket:
Type: AWS::S3::Bucket
Properties:
BucketName: !Sub '${AWS::StackName}-input-bucket-${AWS::AccountId}'
NotificationConfiguration:
EventBridgeConfiguration:
EventBridgeEnabled: true

# Output S3 bucket
OutputBucket:
Type: AWS::S3::Bucket
Properties:
BucketName: !Sub '${AWS::StackName}-output-bucket-${AWS::AccountId}'

# Lambda function
RekognitionFunction:
Type: AWS::Serverless::Function
Properties:
FunctionName: !Sub '${AWS::StackName}-rekognition-function'
Handler: lambda_function.handler
Runtime: python3.8
Timeout: 30
Environment:
Variables:
OUTPUT_BUCKET: !Ref OutputBucket
Policies:
- S3ReadPolicy:
BucketName: !Ref InputBucket
- S3WritePolicy:
BucketName: !Ref OutputBucket
- Statement:
- Effect: Allow
Action:
- rekognition:DetectLabels
Resource: '*'
CodeUri: src/


# EventBridge Rule
S3ObjectCreatedRule:
Type: AWS::Events::Rule
Properties:
Description: "Rule to capture S3 object created events"
EventPattern:
source:
- aws.s3
detail-type:
- Object Created
detail:
bucket:
name:
- !Ref InputBucket
State: "ENABLED"
Targets:
- Arn: !GetAtt RekognitionFunction.Arn
Id: "RekognitionFunctionTarget"

# Permission for EventBridge to invoke Lambda
RekognitionFunctionPermission:
Type: AWS::Lambda::Permission
Properties:
FunctionName: !Ref RekognitionFunction
Action: "lambda:InvokeFunction"
Principal: "events.amazonaws.com"
SourceArn: !GetAtt S3ObjectCreatedRule.Arn

Outputs:
InputBucketName:
Description: 'Name of the input S3 bucket'
Value: !Ref InputBucket
OutputBucketName:
Description: 'Name of the output S3 bucket'
Value: !Ref OutputBucket
RekognitionFunctionName:
Description: 'Name of the Rekognition Lambda function'
Value: !Ref RekognitionFunction
RekognitionFunctionArn:
Description: 'ARN of the Rekognition Lambda function'
Value: !GetAtt RekognitionFunction.Arn

0 comments on commit 024612e

Please sign in to comment.