Skip to content

Latest commit

 

History

History
69 lines (49 loc) · 1.79 KB

README.md

File metadata and controls

69 lines (49 loc) · 1.79 KB

Deep Reinforcement Learning in ViZDoom

Repository for "Deep Reinforcement Learning in VizDoom" thesis. Repository contains scenarios and models to test audiovisual RL models.

Models

APPO

IMPALA

Requirements

Python 3.8.5

ViZDoom 1.1.13

Pytorch 1.6

Torchaudio

Installation guide

Install miniconda with Python 3.8.5

Create new conda environment

#Don't forget to change <somename> to something else
conda env create --name <somename>
conda activate <somename>

Install ViZDoom build requirements

conda install -c conda-forge boost cmake gtk2 sdl2 fluidsynth openal-soft
#codna remove fontconfig # if it conflicts with system libraries
git clone https://github.com/mwydmuch/ViZDoom.git --recurse-submodules
cd ViZDoom
python setup.py build && python setup.py install
cd ..

Download sample-factory

git clone https://github.com/alex-petrenko/sample-factory.git

Change environment name in environment.yml to

Update your environment

conda remove fluidsynth # conflicts with opencv
cd sample-factory
conda env update -f environment.yml

Replace folder sample_factory/envs/doom with folder doom from this repository

Add train.py to sample_factory folder

Experiments

Use this command to start APPO training in Music Recognition scenario

python -m sample_factory.train --env=doomsound_music_recognition --experiment=appo --encoder_custom=vizdoomSoundFFT --train_for_env_steps=1500000000 --seed=0 --algo=APPO --env_frameskip=4 --use_rnn=True --num_workers=72 --num_envs_per_worker=8 --num_policies=1 --ppo_epochs=1 --rollout=32 --recurrence=32 --batch_size=2048 --wide_aspect_ratio=False --max_grad_norm=0.0

References

Sample factory: https://github.com/alex-petrenko/sample-factory

Agents That Listen: https://github.com/hegde95/Agents_that_Listen