-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSeminar 9 Bernoulli&Binom distributions.R
210 lines (170 loc) · 3.84 KB
/
Seminar 9 Bernoulli&Binom distributions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#Bernoulli Distribution is a special case of Binomial distribution
#3 tosses of a coin to get heads
set.seed(123)
rbinom(n=3,size=1,1/2) #
#Binom law
x<-(-10:10)
plot(x,dbinom(x, size=20, prob=1/6), type='s')
#p(X=k)=dbinom(k,n,p)
#p(X<=k)=pbinom(k,n,p)
#p(X>=k) =pbinom(݇k,n, ,lower.tail = FALSE)
#question 1
x<-0:1
y<-0:1
fx<-c(0.1, 0.9)
fy<-c(0.9, 0.1)
#E(x^2)+E(y^2)+2*E(x)*E(y)
mean=crossprod(x^2,fx)+crossprod(y^2,fy)+2*crossprod(x,fx)*crossprod(y,fy)
#sumproduct in Excel
#2d variant
x[1]^2*fx[1]+x[2]^2*fx[2]+y[1]^2*fy[1]+y[2]^2*fy[2]+
2*(x[1]*fx[1]+x[2]*fx[2])*(y[1]*fy[1]+y[2]*fy[2])
# question 2
x<-0:1
f<-c(0.9, 0.1)
sum(f)
mean<-crossprod(x,f) #sumproduct
variance=crossprod(x^2,f)-mean^2
#crossproduct=0*0.9+1*0.1
60*variance+60^2*mean^2
#question 3
x<-c(0,1)
f<-c(0.4, 0.6)
mean=crossprod(4^x,f)
2.8^3
#example
n=5
k=2
p=1/6
#1
factorial(n)/(factorial(k)*factorial(n-k))*p^k*(1-p)^(n-k)
#2
choose(5,2)*p^k*(1-p)^(n-k) #in Excel COMBINE
#or
dbinom(2, size=5, prob=1/6) #in Excel BINOM.DIST(2, 5, 1/6, 0)
#question 4
n=6
k=0
p=5/100
dbinom(k, n, p)
#or
factorial(n)/(factorial(k)*factorial(n-k))*p^k*(1-p)^(n-k)
#or
choose(n,k)*p^k*(1-p)^(n-k) #in excel COMBIN(n,k)
k=1
k=2
1-(dbinom(x=1, size=6, prob=5/100)+dbinom(x=0, size=6, prob=5/100))
1-pbinom(1,6,5/100)
#5
n=5
k=0
p=25/100
1-dbinom(0, n, p)
#b
1-pbinom(3, 5, p)
dbinom(3)+dbinom(4),dbinom(5)
1-(dbinom(0)+dbinom(1)+dbinom(2))
x=0:20
sum(dbinom(x))
s=0
for (k=0:2){
s=dbinom(k)+s
}
1-s
#6
p=0.5
pbinom(3,7,0.5) #k=0:3
# or
(0.5)^0 * (0.5)^7 * choose(7,0)+
(0.5)^1 * (0.5)^6 * choose(7,1)+
(0.5)^2 * (0.5)^5 * choose(7,2)+
(0.5)^3 * (0.5)^4 * choose(7,3)
sum(dbinom(x=4:7, size=7, prob=0.5))
#question 7
n=110
k=80
p=1-0.27
factorial(n)/(factorial(k)*factorial(n-k))*p^k*(1-p)^(n-k)
#
#choose * *
#or
dbinom(80, size=110, prob=1-0.27) # in Excel BINOM.DIST(80, 110, 1-0.27, 0)
#question 8
p=0.7
n=4
dbinom(2, size=n, prob=p)+dbinom(1, size=n, prob=p)+dbinom(0, size=n, prob=p)
#or
pbinom(2, size=n, prob=p) #cumulative distribution function
#
1-dbinom(3, size=n, prob=p)-dbinom(4, size=n, prob=p)
#question 9
# in Excel BINOM.DIST.RANGE(1200;0.6;699;739)
n=1200
k1=699
k2=739
p=60/100
pbinom(739, size=n, prob=p)-pbinom(699-1, size=n, prob=p) #cumulative distribution function
sum(dbinom(699:739,1200,0.6))
#question 10
#одинаковое количество удач и неудач (по 3)
#и поэтому нет разницы вероятность чего cтавить: удачи или не удачи
p=1/6
k=3=n
dnbinom(3,3,1/6) # NEGBINOM.DIST(3,3,5/6,FALSE) or NEGBINOM.DIST(3,3,1/6,FALSE)
dnbinom(3,3,5/6)
#question 11
p=0.8
#Poverbooked=P(X>8)
0.1*choose(9,9)*p^9*(1-p)^0+0.05*(choose(10,9)*p^9*(1-p)^1+0.05*choose(10,10)*p^10*(1-p)^0)
#or
0.1*dbinom(9, size=9, p)+0.05*dbinom(9,10,p)+0.05*dbinom(10,10,p)
#building a plot
1-pbinom(100,110,0.88)
plot(101:115, 1-pbinom(100, 101:115,0.88), type='l',xlab = 'Seats sold',
ylab='Probability of >100 passengers')
#12
n=50
p=15/100
n*p
sqrt(7.5*(1-15/100))
#b
250*n*p
250*sqrt(7.5*(1-15/100))
#15
p=1/6
k=4
n=16
choose(16-4, 4-0)/choose(16, 4)
#b
choose(16-4, 2-0)/choose(16, 2)
#c
1-choose(16-1, 4-0)/choose(16, 4)
#home work
#13
n=620
p=0.78
mu=620*0.78
sigma=sqrt(n*p*(1-p))
#b
mu*2
sigma*2
#14
16*5/100
pbinom(1,16,5/100)
pbinom(1,16,15/100)
pbinom(1,16,25/100)
#16
(choose(4,2)*choose(8,1))/choose(12,3)+((choose(4,3)*choose(8,0))/choose(12,3))
#17
(choose(5,1)*choose(5,5))/choose(10,6)+(choose(5,2)*choose(5,4))/choose(10,6)
#18
192*(15/16+(5/2)^2)
#or
192*(4*5/8*3/8+(4*5/8)^2)
#19
27*(10/9+27*(10/3)^2)
#or
27*5*2/3*1/3+(27*5*2/3)^2
#20
p=0.6
4*p*(1-p)+9*3*p*(1-p)+4*3*p*(1-p)