forked from antmicro/tlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
atomic.c
263 lines (226 loc) · 9.49 KB
/
atomic.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#include "atomic.h"
#include "cpu.h"
#include "pthread.h"
#include "tcg.h"
// We only need to lock if there are multiple CPUs registered in the `atomic_memory_state`.
// Reservations should be made regardless of it; atomic instructions need them even with a single CPU.
// False is returned if `atomic_memory_state` hasn't been initialized at all.
static inline bool are_multiple_cpus_registered()
{
return env->atomic_memory_state != NULL && env->atomic_memory_state->number_of_registered_cpus > 1;
}
static inline void ensure_locked_by_me(struct CPUState *env)
{
#if DEBUG
if (!are_multiple_cpus_registered()) {
return;
}
if (env->atomic_memory_state->locking_cpu_id != env->atomic_id) {
tlib_abort("Tried to release global memory lock by the cpu that does not own it!");
}
#endif
}
static void initialize_atomic_memory_state(atomic_memory_state_t *sm)
{
// `is_mutex_initialized` is reset during serialization.
if (!sm->is_mutex_initialized) {
sm->number_of_registered_cpus = 0;
// Initialize mutex.
pthread_mutexattr_t attributes;
if (unlikely(pthread_mutexattr_init(&attributes))) {
tlib_abortf("Failed to initialize phthread_muttexattr_t");
}
// This flag is only supported on Linux
#if defined(__linux__)
if (unlikely(pthread_mutexattr_setrobust(&attributes, PTHREAD_MUTEX_ROBUST))) {
tlib_abortf("Failed to make the mutex robust");
}
#endif
if (unlikely(pthread_mutex_init(&sm->global_mutex, &attributes))) {
tlib_abortf("Failed to initialize the pthread_mutex");
}
if (unlikely(pthread_mutexattr_destroy(&attributes))) {
tlib_abortf("Failed to destroy the pthread_mutexattr");
}
pthread_cond_init(&sm->global_cond, NULL);
sm->locking_cpu_id = NO_CPU_ID;
sm->entries_count = 0;
sm->is_mutex_initialized = 1;
}
// `are_reservations_valid` is never reset.
if (!sm->are_reservations_valid) {
sm->reservations_count = 0;
for (int i = 0; i < MAX_NUMBER_OF_CPUS; i++) {
sm->reservations[i].id = i;
sm->reservations[i].active_flag = 0;
sm->reservations[i].address = 0;
sm->reservations[i].locking_cpu_id = NO_CPU_ID;
sm->reservations[i].manual_free = 0;
sm->reservations_by_cpu[i] = NO_RESERVATION;
}
sm->are_reservations_valid = 1;
}
}
static inline address_reservation_t *find_reservation_on_address(struct CPUState *env, target_phys_addr_t address,
int starting_position)
{
int i;
for (i = starting_position; i < env->atomic_memory_state->reservations_count; i++) {
if (env->atomic_memory_state->reservations[i].address == address) {
return &env->atomic_memory_state->reservations[i];
}
}
return NULL;
}
// there can be only one reservation per cpu
static inline address_reservation_t *find_reservation_by_cpu(struct CPUState *env)
{
int reservation_id = env->atomic_memory_state->reservations_by_cpu[env->atomic_id];
#if DEBUG
if (reservation_id >= env->atomic_memory_state->reservations_count) {
tlib_abort("Inconsistent reservation count detected.");
}
#endif
return (reservation_id == NO_RESERVATION) ? NULL : &env->atomic_memory_state->reservations[reservation_id];
}
static inline address_reservation_t *make_reservation(struct CPUState *env, target_phys_addr_t address, uint8_t manual_free)
{
if (unlikely(env->atomic_memory_state->reservations_count == MAX_NUMBER_OF_CPUS)) {
tlib_abort("No more address reservation slots");
}
address_reservation_t *reservation = &env->atomic_memory_state->reservations[env->atomic_memory_state->reservations_count];
reservation->active_flag = 1;
reservation->address = address;
reservation->locking_cpu_id = env->atomic_id;
reservation->manual_free = manual_free;
env->atomic_memory_state->reservations_by_cpu[env->atomic_id] = env->atomic_memory_state->reservations_count;
env->atomic_memory_state->reservations_count++;
return reservation;
}
static inline void free_reservation(struct CPUState *env, address_reservation_t *reservation, uint8_t is_manual)
{
#if DEBUG
if (reservation->active_flag == 0) {
tlib_abort("Trying to free not active reservation");
}
if (env->atomic_memory_state->reservations_count == 0) {
tlib_abort("Reservations count is 0, but trying to free one");
}
#endif
if (reservation->manual_free && !is_manual) {
return;
}
env->atomic_memory_state->reservations_by_cpu[reservation->locking_cpu_id] = NO_RESERVATION;
if (reservation->id != env->atomic_memory_state->reservations_count - 1) {
// if this is not the last reservation, i must copy the last one in this empty place
reservation->locking_cpu_id =
env->atomic_memory_state->reservations[env->atomic_memory_state->reservations_count - 1].locking_cpu_id;
reservation->address = env->atomic_memory_state->reservations[env->atomic_memory_state->reservations_count - 1].address;
// active flag does not have to be copied as it's always 1
// and update mapping
env->atomic_memory_state->reservations_by_cpu[reservation->locking_cpu_id] = reservation->id;
}
env->atomic_memory_state->reservations[env->atomic_memory_state->reservations_count - 1].active_flag = 0;
env->atomic_memory_state->reservations_count--;
}
int32_t register_in_atomic_memory_state(atomic_memory_state_t *sm, int32_t atomic_id)
{
cpu->atomic_id = -1;
initialize_atomic_memory_state(sm);
sm->number_of_registered_cpus++;
if (sm->number_of_registered_cpus > MAX_NUMBER_OF_CPUS) {
tlib_printf(LOG_LEVEL_ERROR, "atomic: Maximum number of supported cores exceeded: %d", MAX_NUMBER_OF_CPUS);
return -1;
}
tcg_context_attach_number_of_registered_cpus(&sm->number_of_registered_cpus);
cpu->atomic_id = atomic_id != -1 ? atomic_id : sm->number_of_registered_cpus - 1;
return cpu->atomic_id;
}
void acquire_global_memory_lock(struct CPUState *env)
{
if (!are_multiple_cpus_registered()) {
return;
}
pthread_mutex_lock(&env->atomic_memory_state->global_mutex);
if (env->atomic_memory_state->locking_cpu_id != env->atomic_id) {
while (env->atomic_memory_state->locking_cpu_id != NO_CPU_ID) {
pthread_cond_wait(&env->atomic_memory_state->global_cond, &env->atomic_memory_state->global_mutex);
}
env->atomic_memory_state->locking_cpu_id = env->atomic_id;
}
env->atomic_memory_state->entries_count++;
pthread_mutex_unlock(&env->atomic_memory_state->global_mutex);
}
void release_global_memory_lock(struct CPUState *env)
{
if (!are_multiple_cpus_registered()) {
return;
}
pthread_mutex_lock(&env->atomic_memory_state->global_mutex);
ensure_locked_by_me(env);
env->atomic_memory_state->entries_count--;
if (env->atomic_memory_state->entries_count == 0) {
env->atomic_memory_state->locking_cpu_id = NO_CPU_ID;
pthread_cond_signal(&env->atomic_memory_state->global_cond);
}
pthread_mutex_unlock(&env->atomic_memory_state->global_mutex);
}
void clear_global_memory_lock(struct CPUState *env)
{
if (!are_multiple_cpus_registered()) {
return;
}
pthread_mutex_lock(&env->atomic_memory_state->global_mutex);
ensure_locked_by_me(env);
env->atomic_memory_state->locking_cpu_id = NO_CPU_ID;
env->atomic_memory_state->entries_count = 0;
pthread_cond_signal(&env->atomic_memory_state->global_cond);
pthread_mutex_unlock(&env->atomic_memory_state->global_mutex);
}
// ! this function should be called when holding the mutex !
// If manual_free is true then the performed reservation will only be able to be cancelled explicitly,
// by calling `cancel_reservation` or by performing a different reservation on a CPU that already had
// had a reserved address.
void reserve_address(struct CPUState *env, target_phys_addr_t address, uint8_t manual_free)
{
ensure_locked_by_me(env);
address_reservation_t *reservation = find_reservation_by_cpu(env);
if (reservation != NULL) {
if (reservation->address == address) {
return;
}
// cancel the previous reservation and set a new one
free_reservation(env, reservation, 1);
}
make_reservation(env, address, manual_free);
}
// Returns zero if the reservation was made for the given address
uint32_t check_address_reservation(struct CPUState *env, target_phys_addr_t address)
{
ensure_locked_by_me(env);
address_reservation_t *reservation = find_reservation_by_cpu(env);
return (reservation == NULL || reservation->address != address);
}
void register_address_access(struct CPUState *env, target_phys_addr_t address)
{
if (env->atomic_memory_state == NULL) {
// no atomic_memory_state so no registration needed
return;
}
ensure_locked_by_me(env);
address_reservation_t *reservation = find_reservation_on_address(env, address, 0);
while (reservation != NULL) {
if (reservation->locking_cpu_id != env->atomic_id) {
free_reservation(env, reservation, 0);
}
reservation = find_reservation_on_address(env, address, reservation->id + 1);
}
}
void cancel_reservation(struct CPUState *env)
{
ensure_locked_by_me(env);
address_reservation_t *reservation = find_reservation_by_cpu(env);
if (reservation != NULL) {
free_reservation(env, reservation, 1);
}
}