forked from JCVenterInstitute/NSForest
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNSForest_v3_modified.py
283 lines (238 loc) · 15.2 KB
/
NSForest_v3_modified.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
def NS_Forest(adata, clusterLabelcolumnHeader = "louvain", rfTrees = 1000, Median_Expression_Level = 0, Genes_to_testing = 6, betaValue = 0.5):
"""
auesro: It will crash if a gene with a name starting with a number is selected first in a 'betaQuery'.
To solve this I modify adata gene names (adata.var_names) by adding 4 characters as prefix:
adata.var_names = ['AER_'+x for x in adata.var_names], and I have modified the following code to remove those
4 characters before exporting the results to csv files.
#adata = scanpy object
#rfTrees = Number of trees
#Median_Expression_Level = median expression level for removing negative markers
#Genes_to_testing = How many top genes ranked by binary score will be evaluated in permutations by fbeta-score (as the number increases the number of permutation rises exponentially!)
#betaValue = Set values for fbeta weighting. 1 is default f-measure. close to zero is Precision, greater than 1 weights toward Recall
"""
#libraries
import numpy as np
import pandas as pd
import numexpr
import itertools
from subprocess import call
import scanpy as sc
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
from sklearn.metrics import fbeta_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
import graphviz
import time
# Functions
def randomForest(adata,dataDummy,column,rfTrees,threads): #Runs Random forest on the binary dummy variables; outputs all genes ranked Gini Index
x_train = adata.X
names = adata.var_names
y_train = dataDummy[column]
rf = RandomForestClassifier(n_estimators=rfTrees, n_jobs=threads, random_state=123456)
rf.fit(x_train, y_train)
Ranked_Features = sorted(zip([round(x, 8) for x in rf.feature_importances_], names),reverse=True)
return Ranked_Features
def rankInformative(Ranked_Features,column,rankedDict,howManyInformativeGenes2test): #subsets list according to howManyInformativeGenes2test parameter
RankedList = []
midcounter = 0
for x in Ranked_Features:
midcounter +=1
RankedList.append(x[1])
if midcounter==howManyInformativeGenes2test:
break
rankedDict[column] = RankedList
return RankedList
def negativeOut(x, column,medianValues,Median_Expression_Level): # Removes genes with median expression < Median_Expression_Level parameter
Positive_RankedList_Complete = []
for i in x:
if medianValues.loc[column, i] > Median_Expression_Level:
print(i)
print(medianValues.loc[column, i])
Positive_RankedList_Complete.append(i)
else:
print(i)
print(medianValues.loc[column, i])
print("Is Right Out!")
return Positive_RankedList_Complete
def binaryScore(Positive_RankedList_Complete, InformativeGenes, medianValues, column, clusters2Loop, Ranked_Features, Genes_to_testing,Binary_store_DF): # Takes top ranked positive genes (number according to Genes_to_testing) and computes Binary score for each gene
Positive_RankedList = list(Positive_RankedList_Complete[0:InformativeGenes])
Median_RF_Subset = medianValues.loc[:, Positive_RankedList]
Rescaled_Matrix = pd.DataFrame()
for i in Positive_RankedList:
Target_value = medianValues.loc[column, i]
Rescaled_values = Median_RF_Subset[[i]].divide(Target_value)
Rescaled_Matrix = pd.concat([Rescaled_Matrix,Rescaled_values],axis=1)
difference_matrix = Rescaled_Matrix.apply(lambda x: 1-x, axis=1)
difference_matrix_clean1 = difference_matrix.where(difference_matrix >= 0,other=0)
difference_matrix_clean = difference_matrix_clean1.where(difference_matrix > 0, 0)
ColumnSums = difference_matrix_clean.sum(0)
rescaled = ColumnSums/clusters2Loop
# Double sort so that for ties, the RF ranking prevails!
Ranked_Features_df = pd.DataFrame(Ranked_Features)
Ranked_Features_df.rename(columns={1: 'Symbol'}, inplace=True)
Ranked_Features_df_indexed = Ranked_Features_df.set_index("Symbol")
rescaled_df = pd.DataFrame(rescaled)
binaryAndinformation_Ranks = rescaled_df.join(Ranked_Features_df_indexed,lsuffix='_scaled', rsuffix='_informationGain')
binaryAndinformation_Ranks.sort_values(by=['0_scaled','0_informationGain'],ascending= [False, False], inplace = True)
Binary_ranked_Genes = binaryAndinformation_Ranks.index.tolist()
Binary_RankedList = list(Binary_ranked_Genes[0:Genes_to_testing])
Binary_scores = rescaled.to_dict()
Binary_store_DF = Binary_store_DF.append(binaryAndinformation_Ranks)
return Binary_RankedList,Binary_store_DF
def DT_cutOffs(x, column, dataDummy): # For each gene in the top binary gene, function finds optimal decision tree cutoff for F-beta testing
cut_dict = {}
for i in x:
filename = str(i)
y_train = dataDummy[column]
x_train = adata[:,i].X
#X = x_train[:, None] #fix according to https://github.com/JCVenterInstitute/NSForest/issues/7#issue-1124094198
clf = tree.DecisionTreeClassifier(max_leaf_nodes=2)
clf = clf.fit(x_train, y_train)
threshold = clf.tree_.threshold
cut_dict[i] = threshold[0]
return cut_dict
def queryGenerator(Binary_RankedList, cut_dict): # Builds dict to create queries for F-beta testing
queryList = []
for i in Binary_RankedList:
str1 = i
current_value = cut_dict.get(str1)
queryString1 = str(str1.replace("-", "_").replace(".", "_"))+'>='+ str(current_value)
queryList.append(queryString1)
return queryList
def permutor(x): # creates all combinations of queries built above
binarylist2 = x
combs = []
for i in range(1, len(x)+1):
els = [list(x) for x in itertools.combinations(binarylist2, i)]
combs.extend(els)
return combs
def fbetaTest(x, column, adata, Binary_RankedList,testArray, betaValue): # uses queries to perform F-beta testing at the betaValue set in parameters
fbeta_dict = {}
subset_adata = adata[:,Binary_RankedList]
Subset_dataframe = pd.DataFrame(data = subset_adata.X.toarray(), index = subset_adata.obs_names, columns = subset_adata.var_names) #fix according to https://github.com/JCVenterInstitute/NSForest/issues/7#issue-1124094198
Subset_dataframe.columns = Subset_dataframe.columns.str.replace("-", "_",regex=True).str.replace(".", "_",regex=True) #auesro fixed
for list in x:
testArray.loc[:,'y_pred'] = 0
betaQuery = '&'.join(list)
print(betaQuery)
Ineq1 = Subset_dataframe.query(betaQuery) #auesro fixed: if gene name in first betaQuery of the cluster starts with a number, query will not work
testList = Ineq1.index.tolist()
testArray.loc[testList, 'y_pred'] = 1
f1 = fbeta_score(testArray['y_true'], testArray['y_pred'], average= 'binary', beta=betaValue)
tn, fp, fn, tp = confusion_matrix(testArray['y_true'], testArray['y_pred']).ravel()
### strip betaQuery and normalize
betaQuery = betaQuery.replace("AER_", "") #AER fix
dictName = column+"&"+betaQuery.replace("_", "-")
fbeta_dict[dictName] = f1, tn, fp, fn, tp
return fbeta_dict
def ReportReturn(max_grouped_df): # Cleaning up results to return as dataframe
for column in max_grouped_df.columns[8:14]:
max_grouped_df[column] = max_grouped_df[column].str.replace('nan', '')
max_grouped_df["NSForest_Markers"] = max_grouped_df[max_grouped_df.columns[8:14]].values.tolist()
max_grouped_df = max_grouped_df[['clusterName',"f-measure",'markerCount','NSForest_Markers','True Positive','True Negative','False Positive','False Negative',1,2,3,4,5,6,"index"]]
for i in max_grouped_df.index:
cleanList = [string for string in max_grouped_df.loc[i,'NSForest_Markers'] if string != ""]
max_grouped_df.at[i, 'NSForest_Markers'] = cleanList
Results = max_grouped_df
return Results
#Parameters of interest
#Random Forest parameters
threads = -1 #Number of threads to use, -1 is the greedy option where it will take all available CPUs/RAM
#Filtering and ranking of genes from random forest parameters
howManyInformativeGenes2test = 15 #How many genes from the GiniRanking move on for further testing...
#How many top genes from the Random Forest ranked features will be evaluated for binariness
InformativeGenes = 10
#Main function#
#auesro modification in adata.var_names to prevent problems with gene nomenclature:
adata.var_names = ['AER_'+x for x in adata.var_names]
#Creates dummy columns for one vs all Random Forest modeling
dataDummy = pd.get_dummies(adata.obs[clusterLabelcolumnHeader], columns=[clusterLabelcolumnHeader], prefix = "", prefix_sep = "")
#Creates matrix of cluster median expression values
medianValues = pd.DataFrame(columns=adata.var_names, index=adata.obs[clusterLabelcolumnHeader].unique()) #fix according to https://github.com/JCVenterInstitute/NSForest/issues/7#issue-1124094198
ClusterList = adata.obs[clusterLabelcolumnHeader].unique()
for clust in ClusterList: #adata.obs.Clusters.cat.categories:
subset_adata = adata[adata.obs[clusterLabelcolumnHeader].isin([clust]),:]
Subset_dataframe = pd.DataFrame(data = subset_adata.X.toarray(), index = subset_adata.obs, columns = subset_adata.var_names) #fix modified from https://github.com/JCVenterInstitute/NSForest/issues/7#issue-1124094198
medianValues.loc[clust] = Subset_dataframe.median()
##Use Mean
#for clust in adata.obs.Clusters.cat.categories:
#medianValues.loc[clust] = adata[adata.obs[clusterLabelcolumnHeader].isin([clust]),:].X.mean(0)
clusters2Loop = len(dataDummy.columns)-1
print (clusters2Loop)
#gives us the top ten features from RF
rankedDict = {}
f1_store_1D = {}
Binary_score_store_DF = pd.DataFrame()
DT_cutoffs_store = {}
for column in dataDummy.columns:
print(column)
Binary_store_DF = pd.DataFrame()
#Run Random Forest and get a ranked list
Ranked_Features = randomForest(adata, dataDummy, column, rfTrees, threads)
RankedList = rankInformative(Ranked_Features,column,rankedDict,howManyInformativeGenes2test)
#Setup testArray for f-beta evaluation
testArray = dataDummy[[column]].copy() #auesro fix
testArray.columns = ['y_true']
#Rerank according to expression level and binary score
Positive_RankedList_Complete = negativeOut(RankedList, column, medianValues, Median_Expression_Level)
print(Positive_RankedList_Complete)
outputlist = binaryScore(Positive_RankedList_Complete, InformativeGenes, medianValues, column, clusters2Loop, Ranked_Features, Genes_to_testing,Binary_store_DF)
Binary_RankedList = outputlist[0]
Binary_score_store_DF_extra = outputlist[1].assign(clusterName = column)
Binary_score_store_DF = Binary_score_store_DF.append(Binary_score_store_DF_extra)
#Get expression cutoffs for f-beta testing
cut_dict = DT_cutOffs(Binary_RankedList, column, dataDummy)
DT_cutoffs_store[column] = cut_dict
#Generate expression queries and run those queries using fscore() function
queryInequalities = queryGenerator(Binary_RankedList, cut_dict)
FullpermutationList = permutor(queryInequalities)
print(len(FullpermutationList))
f1_store = fbetaTest(FullpermutationList, column, adata, Binary_RankedList, testArray, betaValue)
f1_store_1D.update(f1_store)
#Report generation and cleanup for file writeouts
f1_store_1D_df = pd.DataFrame() #F1 store gives all results.
f1_store_1D_df = pd.DataFrame.from_dict(f1_store_1D)
Results_df = f1_store_1D_df.transpose()
Results_df.columns = ["f-measure", "True Negative", "False Positive", "False Negative", "True Positive"]
Results_df['markerCount'] = Results_df.index.str.count('&')
Results_df.reset_index(level=Results_df.index.names, inplace=True)
Results_df_done= Results_df['index'].apply(lambda x: pd.Series(x.split('&')))
NSForest_Results_Table=Results_df.join(Results_df_done)
NSForest_Results_Table_Fin = pd.DataFrame()
NSForest_Results_Table_Fin = NSForest_Results_Table[NSForest_Results_Table.columns[0:8]]
for i, col in enumerate(NSForest_Results_Table.columns[8:15]):
splitResults = NSForest_Results_Table[col].astype(str).apply(lambda x: pd.Series(x.split('>=')))
firstOnly = splitResults[0]
Ascolumn = firstOnly.to_frame()
Ascolumn.columns = [col]
NSForest_Results_Table_Fin = NSForest_Results_Table_Fin.join(Ascolumn)
NSForest_Results_Table_Fin.rename(columns={0:'clusterName'},inplace=True) #rename columns by position
NSForest_Results_Table_Fin.sort_values(by=['clusterName','f-measure','markerCount'],ascending= [True, False, True], inplace = True)
print (NSForest_Results_Table_Fin)
time.perf_counter()
#Write outs
Binary_score_store_DF.index = [x[4:] for x in Binary_score_store_DF.index] #auesro fixed, removed the added 'AER_' to gene names
Binary_score_store_DF.to_csv('NS-Forest_v3_Extended_Binary_Markers_Supplemental.csv')
NSForest_Results_Table_Fin.to_csv('NS-Forest_v3_Full_Results.csv')
medianValues.columns = [x[4:] for x in medianValues.columns] #auesro fix to gene names
medianValues.to_csv('NS-Forest_v3_medianValues.csv') #auesro fixed
#Subset of full results
max_grouped = NSForest_Results_Table_Fin[NSForest_Results_Table_Fin.groupby("clusterName")["f-measure"].transform('max') == NSForest_Results_Table_Fin['f-measure']]
max_grouped_df = pd.DataFrame(max_grouped)
##Move binary genes to Results dataframe
clusters2Genes = pd.DataFrame(columns = ['Gene', 'clusterName'])
clusters2Genes["clusterName"] = Binary_score_store_DF["clusterName"]
clusters2Genes["Gene"] = Binary_score_store_DF.index
GroupedBinarylist = clusters2Genes.groupby('clusterName').apply(lambda x: x['Gene'].unique())
BinaryFinal = pd.DataFrame(columns = ['clusterName','Binary_Genes'])
BinaryFinal['clusterName'] = GroupedBinarylist.index
BinaryFinal['Binary_Genes'] = GroupedBinarylist.values
Results = ReportReturn(max_grouped_df)
#Results["NSForest_Markers"] = Results["NSForest_Markers"].apply(clean_alt_list)
Result = pd.merge(Results, BinaryFinal, on='clusterName')
Result.to_csv('NSForest_v3_Final_Result.csv')
ResultUnique = Result.drop_duplicates(subset=["clusterName"])
time.perf_counter()
return ResultUnique