forked from AutomaticBehaviorRecognitionSystem/ABRS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathST_image_to_ST_feature_batch.py
127 lines (79 loc) · 3.97 KB
/
ST_image_to_ST_feature_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# extract ST Features from ST images (dim reduction)
import numpy as np
import scipy
from scipy import ndimage
from scipy import misc
import pickle
import time
import matplotlib.pyplot as plt
import cv2
import os
import natsort
from ABRS_modules import discrete_radon_transform
from ABRS_modules import subplot_images
def project_to_basis_fun (dirPathInput,dirPathU,dirPathOutput,numbFiles):
UDirPathFileName = dirPathU + '\\' + 'USVdictTrainingSet_ST_Gr33a_dust_th0_10_averSubT2_binVar';normalizeByMax = 0;
with open(UDirPathFileName, "rb") as f:
USVdict = pickle.load(f)
U=USVdict['U'];
fileList = natsort.natsorted(os.listdir(dirPathInput),reverse=False) #on 12/10/2018 #pip install natsort
featureMat = np.zeros((30,numbFiles*50));
posMat = np.zeros((2,numbFiles*50));
maxMovementMat = np.zeros((1,numbFiles*50));
ind = 0;
for fl in range(0, numbFiles, 1):
inputFileName = fileList[fl];
print (inputFileName);
fileDirPathInputName = dirPathInput + '\\' + inputFileName; #fir Win
#fileDirPathInputName = dirPathInput + '/' + inputFileName; # for Mac
with open(fileDirPathInputName, "rb") as f:
dictST = pickle.load(f)
sMRecSp = dictST["sMRecSp"];
sMRec = sMRecSp.todense(); #from scipy
sMRec = np.nan_to_num(sMRec);
dictPosRec = dictST["dictPosRec"];
xPosRec = dictPosRec["xPosRec"];
yPosRec = dictPosRec["yPosRec"];
maxMovementRec = dictST["maxMovementRec"];
for i in range(0, sMRec.shape[0]):
imST = np.reshape(sMRec[i,:],(80,80));
imR = discrete_radon_transform(imST, 80);
F = np.fft.fft(imR,axis = 0);
FF = np.fft.fft(np.absolute(F),axis = 1);
aFF = np.absolute(FF);
if normalizeByMax == 1:
naFF = aFF/np.max(np.max(aFF));
if normalizeByMax == 0:
naFF = aFF;
naFFNZ = np.nan_to_num(naFF);
vecFF = np.reshape(np.absolute(naFFNZ),(80*80,1));
for dim in range(0,30):
Udim = U[:,dim];
prDim = np.dot(Udim,vecFF);prDim = prDim[0];
featureMat[dim,ind] = prDim;
posMat[0,ind] = xPosRec[i];
posMat[1,ind] = yPosRec[i];
maxMovementMat[0,ind] = maxMovementRec[i];
ind = ind +1;
STF_30_posXY_dict = {"featureMat" : featureMat, "posMat" : posMat, "maxMovementMat" : maxMovementMat};
outputFileName = 'STF_30_posXY_dict' + inputFileName[5:];
newPath = dirPathOutput + '\\' + outputFileName;
with open(newPath, "wb") as f:
pickle.dump(STF_30_posXY_dict, f)
return STF_30_posXY_dict
numbFiles=720; #number of sMRec files in ST image folders #crimson data in Data_demo
#pathToABRSfolder = 'INSERT PATH TO ABRS FOLDER HERE'
pathToABRSfolder = 'C:\\Users\\ravbar\\Desktop\\ABRS_GH_out'
firstFolder = 0;
dirPathInput = pathToABRSfolder + '\\Data_demo\\ST' #ST image folder; contains subfolders with ST images
dirPathU = pathToABRSfolder + '\\Filters'; # path to Filters (basis from SVD training; U matrix)
dirPathOutput = pathToABRSfolder + '\\Data\\ST_features' # output folder where feature files will be written
STFolderList = os.listdir(dirPathInput);
sz = np.shape(STFolderList);sizeSTFolder = sz[0];
for fld in range(firstFolder, sizeSTFolder):
currentSTFolder = STFolderList[fld];
dirPathInputSTfolder = dirPathInput + '\\' + currentSTFolder;
checkIfFolder = os.path.isdir(dirPathInputSTfolder);
if checkIfFolder == True:
STF_30_posXY_dict = project_to_basis_fun (dirPathInputSTfolder,dirPathU,dirPathOutput,numbFiles)
#imB=U[:,4].reshape(80,80);plt.matshow(imB[5:75,5:75], interpolation=None, aspect='auto');plt.show()