-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfunctions_coords.py
323 lines (274 loc) · 12.6 KB
/
functions_coords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import os
import numpy as np
import rht, RHT_tools
import astropy.wcs as wcs
from astropy.io import fits
from PyAstronomy import pyasl
from scipy import interpolate
from pytpm import tpm, convert
from astropy import units as u
import matplotlib.pyplot as plt
import montage_wrapper as montage
from scipy import signal, spatial
from reproject import reproject_interp
from astropy.coordinates import SkyCoord
from matplotlib import rc
rc("text", usetex=True)
def fdegtosexa(ra_deg,dec_deg):
'''
Converts Right Ascension and Declination coordinates from decimal degrees to the sexagismal system.
Input
ra_deg : Right Ascension coordinates in degrees; can be single-valued or a list/array
dec_deg : Declination coordinates in degrees; can be single-valued or a list/array
Output
ra_sexa : Right Ascension coordinates in the sexagismal system
dec_sexa : Declination coordinates in the sexagismal system
'''
if (isinstance(ra_deg,float)==True) or (isinstance(ra_deg,int)==True):
# if input is a single coordinate.
sexa = pyasl.coordsDegToSexa(ra_deg,dec_deg)
sexa_split = sexa.split(" ")
ra_sexa = sexa_split[0]
dec_sexa = sexa_split[1]
elif (isinstance(ra_deg,np.ndarray)==True) or (isinstance(ra_deg,list)==True):
# If input is an array of coordinates.
ra_sexa_list = []
dec_sexa_list = []
for i in range(len(ra_deg)):
ra_deg_i = ra_deg[i]
dec_deg_i = dec_deg[i]
sexa_i = pyasl.coordsDegToSexa(ra_deg_i,dec_deg_i)
sexa_split_i = sexa_i.split(" ")
ra_sexa_i = sexa_split_i[0]
dec_sexa_i = sexa_split_i[1]
ra_sexa_list.append(ra_sexa_i)
dec_sexa_list.append(dec_sexa_i)
ra_sexa = np.array(ra_sexa_list)
dec_sexa = np.array(dec_sexa_list)
return ra_sexa,dec_sexa
def fsexatodeg(ra_sexa,dec_sexa):
'''
Converts Right Ascension and Declination coordinates from the sexagismal system to decimal degrees.
Note: valid input formats are e.g., "00 05 08.83239 +67 50 24.0135" or “00:05:08.83239 -67:50:24.0135”.
Spaces or colons are allowed as separators for the individual components of the input coordinates.
Input
ra_sexa : Right Ascension coordinates in the sexagismal system; can be single-valued or a list/array
dec_sexa : Declination coordinates in the sexagismal system; can be single-valued or a list/array
Output
ra_deg : Right Ascension coordinates in degrees
dec_deg : Declination coordinates in degrees
'''
if (isinstance(ra_sexa,str)==True):
# If input is a single coordinate.
sexa = ra_sexa+" "+dec_sexa
ra_deg,dec_deg = pyasl.coordsSexaToDeg(sexa)
elif (isinstance(ra_sexa,np.ndarray)==True):
# If input is an array of coordinates.
ra_deg_list = []
dec_deg_list = []
for i in range(len(ra_sexa)):
ra_sexa_i = ra_sexa[i]
dec_sexa_i = dec_sexa[i]
sexa_i = ra_sexa_i+" +"+dec_sexa_i
ra_deg_i,dec_deg_i = pyasl.coordsSexaToDeg(sexa_i)
ra_deg_list.append(ra_deg_i)
dec_deg_list.append(dec_deg_i)
ra_deg = np.array(ra_deg_list)
dec_deg = np.array(dec_deg_list)
return ra_deg,dec_deg
def fB1950toJ2000(ra_B1950,dec_B1950):
'''
Precess Right Ascension and Declination coordinates from the B1950 system to the J2000 system.
Input
ra : B1950 Right Ascension coordinates in the sexagismal system; ; can be single-valued or a list/array
dec : B1950 Declination coordinates in the sexagismal system; can be single-valued or a list/array
Output
ra_trans : J2000 Right Ascension coordinates in decimal degrees
dec_trans : J2000 Declination coordinates in decimal degrees
'''
def fB1950toJ2000_main(ra_J2000,dec_J2000):
'''
Precess Right Ascension and Declination coordinates from the sexagismal positions in the B1959 system to decimal degrees in the J2000 system.
Input
ra_J2000: single Right Ascension position in sexagismal J2000
dec_J2000: single Declination position in sexagismal J2000
Output
ra_deg: single Right Ascension position in decimal degree
dec_deg: single Declination position in decimal degrees
'''
# convert decimal degrees to sexagismal format
ra_sexa,dec_sexa = degtosexa(ra_J2000,dec_J2000)
# extract RA hh:mm:ss and Dec dd:mm:ss components
ra_hh = float(ra_sexa.split(" ")[0])
ra_mm = float(ra_sexa.split(" ")[1])
ra_ss = float(ra_sexa.split(" ")[2])
dec_dd = float(dec_sexa.split(" ")[0][1:])
dec_mm = float(dec_sexa.split(" ")[1])
dec_ss = float(dec_sexa.split(" ")[2])
# create RA and Dec objects
ra_J2000 = tpm.HMS(hh=ra_hh,mm=ra_mm,ss=ra_ss).to_radians()
dec_J2000 = tpm.DMS(dd=dec_dd,mm=dec_mm,ss=dec_ss).to_radians()
# velocity vector
v5 = convert.cat2v6(ra_J2000,dec_J2000)
v5_fk6 = convert.convertv6(v5,s1=5,s2=6,epoch=tpm.B1950,equinox=tpm.B1950)
v5_fk6_ep2000 = convert.proper_motion(v5_fk6,tpm.J2000,tpm.B1950)
d = convert.v62cat(v5_fk6_ep2000,C=tpm.CJ)
ra_new_rad = d["alpha"]
ra_deg = ra_new_rad * 180./np.pi
dec_new_rad = d["delta"]
dec_deg = dec_new_rad * 180./np.pi
return ra_deg,dec_deg
ra_J2000 = []
dec_J2000 = []
if isinstance(ra_B1950,list)==True:
# If input is a list, iterate through each set of coordinates.
for i in range(len(ra_B1950)):
ra_i = ra_B1950[i]
dec_i = dec_B1950[i]
ra_new_deg,dec_new_deg=fB1950toJ2000_main(ra_i,dec_i)
ra_J2000.append(ra_new_deg)
dec_J2000.append(dec_new_deg)
ra_J2000 = np.array(ra_J2000)
dec_J2000 = np.array(dec_J2000)
elif isinstance(ra_B1950,float)==True:
# If given a single position, transform the single set of coordinates.
ra_new_deg,dec_new_deg=fB1950toJ2000_main(ra_B1950,dec_B1950)
ra_J2000 = ra_new_deg
dec_J2000 = dec_new_deg
return ra_J2000, dec_J2000
def fmatchpos(names,ra1,dec1,ra2,dec2,minarcsec,fdir=None,fname=None,N1=None,N2=None,x1min=None,x1max=None,x2min=None,x2max=None,xlabel1=None,xlabel2=None,ylabel1=None,ylabel2=None,deg=True):
'''
Matches two sets of positions in equatorial coordinates by projecting (ra1,dec1) onto (ra2,dec2).
Usage :
ra1_matches = ra1[indices] # matched by position
ra1_matches_clean = ra1[indices][ii] # matched by position and cleaned by separation requirement
ra2_clean = ra2[ii] # matched by position and cleaned by separation requirement
Input:
names : IDs names of objects in second array array
ra1 : first array of right ascension coordinates (either decimal degrees or sexagismal)
dec1 : first array of declination coordinates (either decimal degrees or sexagismal)
ra2 : second array of right ascension coordinates (either decimal degrees or sexagismal)
dec2 : second array of declination coordinates (either decimal degrees or sexagismal)
minarcsec : minimum pointing offset for matching criterium
fdir : output directory name for plotting offset distribution (otherwise=="None")
fname : output filename for plotting offset distribution (otherwise=="None")
N1 : number of x-axis bins for plotting offset distribution (otherwise=="None")
N2 : number of y-axis bins for plotting offset distribution (otherwise=="None")
deg : True if input coordinates are in decimal degrees; False if sexagismal
Output:
dist_deg_clean : array of distances between cleaned (ra1,dec1) and (ra2,dec2) in degrees
dist_arcsec_clean : array of distances between cleaned (ra1,dec1) and (ra2,dec2) in arcseconds
indices : array of indices that match (ra1,dec1) to (ra2,dec2)
ii : array of indices that clean matched (ra1,dec1) and (ra2,dec2) positions
ii_nomatch : array of indices that clean non-matched (ra1,dec1) positions
ra1_deg_matches_clean : array of ra1 positions matched to (ra2,dec2) and cleaned using minarcsec in degrees
dec1_deg_matches_clean : array of dec1 positions matched to (ra2,dec2) and cleaned using minarcsec in degrees
ra2_deg_clean : array of ra2 positions matched to (ra1,dec1) and cleaned using minarcsec in degrees
dec2_deg_clean : array of dec2 positions matched to (ra1,dec1) and cleaned using minarcsec in degrees
'''
if deg==False:
# convert sexagismal format to decimal degrees
ra1_deg = []
dec1_deg = []
for i in range(len(ra1)):
ra1_i = ra1[i]
dec1_i = dec1[i]
ra1_deg_i,dec1_deg_i = fsexatodeg(ra1_i,dec1_i)
ra1_deg.append(ra1_deg_i)
dec1_deg.append(dec1_deg_i)
ra2_deg = []
dec2_deg = []
for i in range(len(ra2)):
ra2_i = ra2[i]
dec2_i = dec2[i]
ra2_deg_i,dec2_deg_i = fsexatodeg(ra2_i,dec2_i)
ra2_deg.append(ra2_deg_i)
dec2_deg.append(dec2_deg_i)
else:
ra1_deg,dec1_deg = ra1,dec1
ra2_deg,dec2_deg = ra2,dec2
radec1 = np.transpose([ra1_deg,dec1_deg])
radec2 = np.transpose([ra2_deg,dec2_deg])
kdtree = spatial.KDTree(radec1)
matches = kdtree.query(radec2)
dist_deg = np.array(matches[0])
dist_arcsec = dist_deg * 3600.
indices = np.array(matches[1])
ra1_deg_matches = ra1_deg[indices]
dec1_deg_matches = dec1_deg[indices]
# matching sources
conditions = np.array(dist_arcsec<=minarcsec)
ii = np.array(np.where(conditions)[0])
dist_deg_clean = dist_deg[ii]
dist_arcsec_clean = dist_arcsec[ii]
indices_clean = indices[ii]
ra1_deg_matches_clean = ra1_deg_matches[ii]
dec1_deg_matches_clean = dec1_deg_matches[ii]
ra2_deg_clean = ra2_deg[ii]
dec2_deg_clean = dec2_deg[ii]
# non-matching sources
conditions_nomatch = np.array(dist_arcsec>minarcsec)
ii_nomatch = np.array(np.where(conditions_nomatch)[0])
dist_deg_nomatch = dist_deg[ii_nomatch]
dist_arcsec_nomacth = dist_arcsec[ii_nomatch]
indices_nomatch = indices[ii_nomatch]
ra1_deg_matches_nomatch = ra1_deg_matches[ii_nomatch]
dec1_deg_matches_nomatch = dec1_deg_matches[ii_nomatch]
ra2_deg_nomatch = ra2_deg[ii_nomatch]
dec2_deg_nomatch = dec2_deg[ii_nomatch]
if fdir is not None:
# Plot resulting distribution of position offsets.
plothist(fdir=fdir,fname=fname,hist1=dist_arcsec,N1=N1,xlabel1=xlabel1,ylabel1=ylabel1,x1min=x1min,x1max=x1max,hist2=None,N2=None,xlabel2=None,ylabel2=None,x2min=None,x2max=None,common_xaxis=False,flipx1=False,flipx2=False)
return dist_deg_clean,dist_arcsec_clean,indices,ii,ii_nomatch,ra1_deg_matches_clean,dec1_deg_matches_clean,ra2_deg_clean,dec2_deg_clean
def fannregfiles(names,ra,dec,fdir,color="RED",size=0.001,deg=True,writenames=True):
'''
Write annotation (for kvis) and region (for ds9) files for input coordinates. If coordinates are in sexagismal format (i.e., if deg==False), will convert the positions to decimal degrees first.
names : object IDs
ra : Right Ascension either in decimal degrees or sexagismal format
dec : Declination either in decimal degrees or sexagismal format
fdir : directory where output annotation files will be stored
color : colour of annotation circles
size : size of annotation circles
deg : if True, input positions are in decimal degrees; if false, sexagismal format (default=True)
'''
if deg==False:
ra_deg = []
dec_deg = []
# convert sexagismal format to decimal degrees
for i in range(len(ra)):
ra_sexa = ra[i]
dec_sexa = dec[i]
ra_deg_i,dec_deg_i = fsexatodeg(ra_sexa,dec_sexa)
ra_deg.append(ra_deg_i)
dec_deg.append(dec_deg_i)
else:
ra_deg = ra
dec_deg = dec
# define files
if writenames==True:
file_kvis = fdir+"positions.ann"
file_ds9 = fdir+"positions.reg"
elif writenames==False:
file_kvis_names = fdir+"positions_names.ann"
file_ds9_names = fdir+"positions_names.reg"
print("writing files....")
print(file_kvis)
print(file_ds9)
# open files
f_kvis = open(file_kvis,"w+")
f_ds9 = open(file_ds9, "w+")
# write to files
f_kvis.writelines("COLOR "+color+"\n\n")
for i in range(len(ra_deg)):
ra_deg_i = ra_deg[i]
dec_deg_i = dec_deg[i]
if writenames==True:
name = names[i]
f_kvis.writelines("TEXT "+str(ra_deg_i)+" "+str(dec_deg_i)+" "+str(name)+"\n\n")
f_kvis.writelines("CIRCLE "+str(ra_deg_i)+" "+str(dec_deg_i)+" "+str(size)+"\n\n")
f_ds9.writelines("fk5;circle "+str(ra_deg_i)+" "+str(dec_deg_i)+" "+str(size)+" # color="+str(color.lower())+" text={"+str(name)+"}\n\n")
elif writenames==False:
f_kvis.writelines("CIRCLE "+str(ra_deg_i)+" "+str(dec_deg_i)+" "+str(size)+"\n\n")
f_ds9.writelines("fk5;circle "+str(ra_deg_i)+" "+str(dec_deg_i)+" "+str(size)+" # color="+str(color.lower())+"\n\n")
f_kvis.close()
f_ds9.close()