-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
3134 lines (2793 loc) · 210 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/local/bin/python
'''
Requires that images are organized in the following way:
raw science images: <parent directory>/<date>/<images>/
bias images: <parent directory>/<date>/<calibration folder>/<images>/
dark images: <parent directory>/<date>/<calibration folder>/<images>/
flat images: <parent directory>/<date>/<flat folder>/<images>/
Requires that filenames are named in the following way:
raw science images: objectname_[]-[]-[].fts
bias images: Bias-[]-[]-[]-.fts
dark images: Dark-[]-[]-[].fts
flat images: AutoFlat-[]-[]-[].fts
The following is done with the raw science images:
1. dark subtracted and flat fielded
2. astronometry.net is used to obtain accurate world coordinate system
3. Source Extractor is used for photometry
Outputs the following directories
- :
Requires the following header keys in the science images' FITS files:
- OBJECT
- FILTER
- EXPTIME
Requires the following software:
- sextractor
- astrometry.net
Requires the following packages: os, re, yaml, docopt, numpy, astropy
Requires the following files:
- calibration.py
- callastrometry.py
Usage:
main [options]
Options:
-h, --help Show this screen.
[default: False]
-l, --logoutput Generate log outputs.
[default: True]
-v, --verbose Generate verbose output.
[default: True]
-g, --generate Generate outputs.
[default: True]
-w, --wcs Create WCS solution via Astronomy.net.
[default: False]
-r, --reduce Perform data reduction.
[default: False]
-c, --calibrate Perform zero-point calibration.
[default: False]
-p, --panstarrs Use Pan-STARRS for calibration.
[default: False]
-a, --atlas Use ATLAS for calibration.
[default: True]
-s, --sextractor Run Source Extractor for calibration step.
[default: False]
-k, --checkcal Check the zero-point calibration.
[default: False]
-x, --stack Stack calibrated images.
[default: False]
-f, --finalcalcheck Check the zero-point calibration on stacked images.
[default: False]
-n, --finalsexrun Final SExtractor run on stacked images.
[default: False]
-m, --matchcats Match source catalogues.
[default: False]
'''
#########################################################################################################
# #
# IMPORT PACKAGES #
# #
#########################################################################################################
import os
import re
import yaml
import docopt
import cPickle as pickle
from astropy.io import fits
from astropy.table import Table
import subprocess
#########################################################################################################
# #
# COMMAND LINE ARGUMENTS #
# #
#########################################################################################################
arguments = docopt.docopt(__doc__)
# options without arguments
HELP = arguments["--help"]
LOGOUTPUT = arguments["--logoutput"]
VERBOSE = arguments["--verbose"]
GENERATE = arguments["--generate"]
CREATEWCS = arguments["--wcs"]
REDUCE = arguments["--reduce"]
CALIBRATE = arguments["--calibrate"]
PANSTARRS = arguments["--panstarrs"]
ATLAS = arguments["--atlas"]
SEXTRACTOR = arguments["--sextractor"]
CHECKCAL = arguments["--checkcal"]
STACK = arguments["--stack"]
FINALCALCHECK = arguments["--finalcalcheck"]
FINALSEXRUN = arguments["--finalsexrun"]
MATCHCATS = arguments["--matchcats"]
#########################################################################################################
# #
# IMPORT CONFIGURATION FILE #
# #
#########################################################################################################
with open("config.yml","r") as fconfig:
config_data = yaml.safe_load(fconfig)
# input:
ncores_wcs = int(config_data["ncores_wcs"]) # number of cores for WCS solution if multiprocessing is used
ncores_cal = int(config_data["ncores_cal"]) # number of cores for data reduction if multiprocessing is used
ncores_apass = int(config_data["ncores_apass"]) # number of cores for APASS solution if multiprocessing is used
ncores_panstarrs = int(config_data["ncores_panstarrs"]) # number of cores for Pan-STARRS solution if multiprocessing is used
ncores_atlas = int(config_data["ncores_atlas"]) # number of cores for ATLAS solution if multiprocessing is used
MULTIPROCESSING_CAL = config_data["MULTIPROCESSING_CAL"] # multiprocessing boolean for calibration (if True, excute multiprocessing)
parentdir = config_data["parentdir"] # parent directory where code is stored
datadir = config_data["datadir"] # directory where data is stored
calfolder = config_data["calfolder"] # folder name containing bias and dark images
flatfolder = config_data["flatfolder"] # folder name containing flat images
objects = config_data["objects"].split(" ") # list of telescope pointings/object names
passbands = config_data["passbands"].split(" ") # list of passbands to be used
sciencedata_dsff_cutoff = config_data["sciencedata_dsff_cutoff"] # lower-limit cut-off value for dark-subtracted, flat-fielded science images
totalFOV = config_data["totalFOV"] # total field-of-view (FOV) covering all telescope pointings [deg]
centerRA = config_data["centerRA"] # Right Ascension (RA) of the center of all telescope pointings [deg]
centerDEC = config_data["centerDEC"] # Declination (Dec) of the center of all telescope pointings [deg]
# output:
dsffdir = config_data["dsffdir"] # directory where reduced dark-subtracted, flat-fielded science images will be stored
mastercaldir = config_data["mastercaldir"] # directory where master 'calibration' images will be stored for data reduction
MMcaldir = mastercaldir+"MMcalimages/" # directory where master-master 'calibration' images will be stored for data
calibrateddir = config_data["calibrateddir"] # directory where calibrated images will be stored
stackedcaldir = config_data["stackedcaldir"] # directory where final stacked calibrated images will be stored
# reduction
sciencemaskdir = config_data["sciencemaskdir"] # directory where science masks will be stored for data reduction
wcsdir = config_data["wcsdir"] # directory where Astrometry.net WCS solutions will be stored
apassdir = config_data["apassdir"] # directory where APASS catalogues will be stored
panstarrsdir = config_data["panstarrsdir"] # directory where PanSTARRS catalogue is stored
panstarrscat = config_data["panstarrscat"] # PanSTARRS catalogue file name
panstarrstrimcat = config_data["panstarrstrimcat"] # Trimmed PanSTARRS catalogue file name
panstarrsphot = config_data["panstarrsphot"] # Pan-STARRS photometry type: "Ap" (aperture), "PSF", or "Kron"
atlasdir = config_data["atlasdir"] # directory where ATLAS catalogue is stored
atlascat = config_data["atlascat"] # ATLAS catalogue file name
atlastrimcat = config_data["atlastrimcat"] # ATLAS catalogue file name
gaiadir = config_data["gaiadir"] # directory where Gaia catalogue is stored
gaiacat = config_data["gaiacat"] # Gaia catalogue file name
mergedcatsdir = config_data["mergedcatsdir"] # directory where merged catalogues are stored
ATLASDITcat = config_data["ATLASDITcat"] # ATLAS-DIT merged catalogue file name
# SExtractor directories
sexdir = config_data["sexdir"] # directory where Source Extractor files will be stored
sexobjdir = config_data["sexobjdir"] # directory where Source Extractor object files will be stored
sexcatdir = config_data["sexcatdir"] # directory where Source Extractor catalogue files will be stored
sexbgdir = config_data["sexbgdir"] # directory where Source Extractor background files will be stored
sexcheckzpdir = config_data["sexcheckzpdir"] # directory where Source Extractor files will be stored for zp check
sexobjcheckzpdir = config_data["sexobjcheckzpdir"] # directory where Source Extractor object files will be stored for zp check
sexcatcheckzpdir = config_data["sexcatcheckzpdir"] # directory where Source Extractor catalogue files will be stored for zp check
sexbgcheckzpdir = config_data["sexbgcheckzpdir"] # directory where Source Extractor background files will be stored for zp check
sexfinalcheckzpdir = config_data["sexfinalcheckzpdir"] # directory where Source Extractor files will be stored for final zp check
sexobjfinalcheckzpdir = config_data["sexobjfinalcheckzpdir"] # directory where Source Extractor object files will be stored for final zp check
sexcatfinalcheckzpdir = config_data["sexcatfinalcheckzpdir"] # directory where Source Extractor catalogue files will be stored for final zp check
sexbgfinalcheckzpdir = config_data["sexbgfinalcheckzpdir"] # directory where Source Extractor background files will be stored for final zp check
sexstackedcaldir = config_data["sexstackedcaldir"] # directory where Source Extractor files will be stored for stacked calibrated images
sexobjstackedcaldir = config_data["sexobjstackedcaldir"] # directory where Source Extractor object files will be stored for stacked calibrated images
sexcatstackedcaldir = config_data["sexcatstackedcaldir"] # directory where Source Extractor catalogue files will be stored for stacked calibrated images
sexbgstackedcaldir = config_data["sexbgstackedcaldir"] # directory where Source Extractor background files will be stored for stacked calibrated images
# log output directory
logdir = config_data["logdir"] # directory where log files will be stored
execfile(parentdir+"sourceastsex.py") # change Python virtualenv
#########################################################################################################
# #
# IMPORT FUNCTIONS #
# #
#########################################################################################################
from functools import partial # allows extra arguments to be passed to multiprocessing (bug with lambda f'n)
import multiprocessing # for multiprocessing
import time # to measure processing time
import imp # to force reloading
# filefuncts.py
import filefuncts
imp.reload(filefuncts)
from filefuncts import *
# calibration.py
import calibration
imp.reload(calibration)
from calibration import *
# collectzipdata.py
import collectzipdata
imp.reload(collectzipdata)
from collectzipdata import *
# callastrometry.py
import callastrometry
imp.reload(callastrometry)
from callastrometry import *
# callapass.py
#if APASS:
# import callapass
# imp.reload(callapass)
# from callapass import callapass
# apassoverlap.py
#if APASS:
# import apassoverlap
# imp.reload(apassoverlap)
# from apassoverlap import *
# panstarrsoverlap.py
if PANSTARRS:
import panstarrsoverlap
imp.reload(panstarrsoverlap)
from panstarrsoverlap import *
# atlasoverlap.py
if ATLAS:
import atlasoverlap
imp.reload(atlasoverlap)
from atlasoverlap import *
##### CHECK FOR MISSING '/' AT END OF INPUT DIRECTORIES #####
direndslash(parentdir)
direndslash(datadir)
direndslash(calfolder)
direndslash(flatfolder)
direndslash(dsffdir)
direndslash(mastercaldir)
direndslash(sciencemaskdir)
direndslash(wcsdir)
direndslash(apassdir)
direndslash(logdir)
direndslash(sexdir)
direndslash(sexobjdir)
direndslash(sexcatdir)
direndslash(sexbgdir)
if GENERATE:
plotdir = parentdir+"plots/"
calplotdir = plotdir+"calibration/"
calibratedplotdir = plotdir+"calibrated/"
if not pathexists(plotdir):
os.system("mkdir "+plotdir)
if not pathexists(calplotdir):
os.system("mkdir "+calplotdir)
if not pathexists(calibratedplotdir):
os.system("mkdir "+calibratedplotdir)
#########################################################################################################
# #
# OBTAIN FOLDERS #
# #
#########################################################################################################
folders = []
if VERBOSE:
print "> obtaining folders and sorting them"
for folder in os.listdir(datadir):
folders.append(folder)
folders.sort()
badsciencefiles = {} # dictionary of bad science images using flag input
badobjfiles = {} # dictionary of ignored files using object input
#########################################################################################################
# #
# WCS SOLUTION #
# #
#########################################################################################################
####################################### WCS FUNCTION ####################################################
def mainwcs(folder,folderdir,wcsfolderdir,badsciencefiles,badobjfiles,wcslogstring,file,sbool,wcslog):
checkflag,badsciencefiles=fcheckflag(file,folder,badsciencefiles,wcslogstring,store=sbool,log=wcslog)
if checkflag==True:
if VERBOSE:
print " > skipping bad file: "+file
else:
checkobj,badobjfiles=fcheckobj(file,folder,badobjfiles,wcslogstring,store=sbool,log=wcslog)
if checkobj==True:
if VERBOSE:
print " > processing file "+folderdir+file
parity = scrubwcsheader(folderdir,file,wcsfolderdir)
callastrometry(
wcsfolderdir+file,parity,parentdir+"astrometry.cfg",parentdir+"verify_astrometry.cfg",generate=True,filekeep=False
)
########################################### OBTAIN WCS SOLUTION ########################################
pool_wcs = multiprocessing.Pool(ncores_wcs)
if CREATEWCS:
if VERBOSE:
print "\n-------------- creating world coordinate system for science images ---------------"
# only clear out WCS directories if obtaining solution;
# otherwise can run it once and skip this step afterward without losing files written by Astrometry.net
if pathexists(wcsdir):
os.system("rm -rf "+wcsdir)
else:
pass
os.system("mkdir "+wcsdir)
for folder in folders:
os.system("mkdir "+wcsdir+folder)
badsciencefiles = {}
badobjfiles = {}
wcslogstring = {}
if mode=="raw":
sbool=False
else:
sbool=True
if LOGOUTPUT:
wcslog = True
else:
wcslog = False
for folder in folders:
print "processing folder "+folder+"..."
folderdir = datadir+folder+"/"
wcsfolderdir = wcsdir+folder+"/"
files = os.listdir(folderdir)
if len(files)>=ncores_wcs:
mainwcs_mp = partial(mainwcs,folder,folderdir,wcsfolderdir,badsciencefiles,badobjfiles,wcslogstring,sbool=sbool,wcslog=wcslog)
pool_wcs.map(mainwcs_mp,files)
else:
for file in os.listdir(folderdir):
mainwcs(folder,folderdir,wcsfolderdir,badsciencefiles,badobjfiles,wcslogstring,file,sbool,wcslog)
else:
if VERBOSE:
print "\n--------------------- creating Astrometry.net WCS solution -----------------------"
#########################################################################################################
# #
# DATA REDUCTION #
# #
#########################################################################################################
############################# DATA REDUCTION FUNCTION #################################
def maincal(folder):
start_time = time.time()
# log output
if LOGOUTPUT:
logbool=True
logstring = []
else:
logbool=False
logstring = []
missingwcs = {} # dictionary of science images missing wcs solution
wrongextfiles = {} # dictionary of science images with wrong file extension
badbiasfiles = {} # dictionary of bad bias images using flag input
baddarkfiles = {} # dictionary of bad dark images using flag input
badflatfiles = {} # dictionary of bad flat images using flag input
badsciencefiles = {} # dictionary of bad science images using flag input
badobjfiles = {} # dictionary of ignored files using object input
missing_flat_passband = {} # dictionary of all files with missing flats in their respective passbands
missing_calibration = {} # dictionary of all files with missing calibration images
missing_flat = {} # dictionary of all files with missing flat images
missing_calflat = {} # dictionary of all files with missing calibration and flat images
all_masterbias = [] # list containing all master bias frames
all_masterdarks = {} # dictionary containing all master dark frames
all_masterflats = {} # dictionary containing all master flat frames
elapsed_time = [] # dictionary of elapsed time for each file processed
print "------------------------- processing folder "+folder+" -------------------------"
if LOGOUTPUT:
logstring.append("------------------------- processing folder "+folder+" -------------------------")
if CREATEWCS:
folderdir = wcsdir+folder+"/" # folder containing wcs-corrected raw data but NOT calibration images
if VERBOSE:
print "calibrating folder "+folder+" using wcs-corrected raw data ..."
if LOGOUTPUT:
logstring.append("calibrating folder "+folder+" using wcs-corrected raw data ...")
else:
if pathexists(wcsdir+folder):
folderdir = wcsdir+folder+"/" # folder containing wcs-corrected raw data but NOT calibration images
if VERBOSE:
print "calibrating folder "+folder+" using wcs-corrected raw data ..."
if LOGOUTPUT:
logstring.append("calibrating folder "+folder+" using wcs-corrected raw data ...")
else:
folderdir = datadir+folder+"/" # folder containing original raw science, bias, dark, and flat images
if VERBOSE:
print "calibrating folder "+folder+" using original raw data ..."
if LOGOUTPUT:
logstring.append("calibrating folder "+folder+" using original raw data ...")
caldir = datadir+folder+"/"+calfolder # folder containing calibration images
flatdir = datadir+folder+"/"+flatfolder # folder containing flat images
dsfffolderdir = dsffdir+folder+"/" # folder containing dark subtracted flat fielded science images
mastercalfolderdir = mastercaldir+folder+"/" # folder containing master calibration images
sciencemaskfolderdir = sciencemaskdir+folder+"/" # folder containing science masks
sbool = True
if bothcaldirs(caldir,flatdir)==True:
if VERBOSE:
print "folder "+folder+" has all calibration data"
if LOGOUTPUT:
logstring.append(" > folder "+folder+" has all calibration data")
# create master calibration images
if VERBOSE:
print "creating master bias"
if LOGOUTPUT:
logstring.append(" > creating master bias")
masterbias,badbiasfiles = createmasterbias(caldir,folder,badbiasfiles,logstring,sbool,log=logbool)
if VERBOSE:
print "creating master darks"
if LOGOUTPUT:
logstring.append(" > creating master darks")
masterdarks,baddarkfiles = createmasterdarks(caldir,masterbias,folder,baddarkfiles,logstring,sbool,log=logbool)
if VERBOSE:
print "creating master flats"
if LOGOUTPUT:
logstring.append(" > creating master flats")
masterflats,badflatfiles = createmasterflats(flatdir,masterbias,masterdarks,folder,badflatfiles,logstring,sbool,log=logbool)
# save master calibration images
if VERBOSE:
print "saving master bias"
if LOGOUTPUT:
logstring.append(" > saving master bias")
savemasterbias(mastercalfolderdir,masterbias)
if VERBOSE:
print "saving master darks"
if LOGOUTPUT:
logstring.append(" > saving master darks")
savemasterdarks(mastercalfolderdir,masterdarks)
if VERBOSE:
print "saving master flats"
if LOGOUTPUT:
logstring.append(" > saving master flats")
savemasterflats(mastercalfolderdir,masterflats)
# collect master calibration images
all_masterbias.append(masterbias)
all_masterdarks = appendmasterdarks(masterdarks,all_masterdarks)
all_masterflats = appendmasterflats(masterflats,all_masterflats)
sciencefiles = []
sciencefiles = os.listdir(folderdir)
for file in sciencefiles:
checkobj,badobjfiles=fcheckobj(file,folder,badobjfiles,logstring,store=True,log=logbool)
checkext,wrongextfiles=fcheckext(file,folder,".fts",wrongextfiles)
if checkobj and checkext:
checkflag,badsciencefiles = fcheckflag(file,folder,badsciencefiles,logstring,store=True,log=logbool)
if checkflag:
if LOGOUTPUT:
logstring.append(" > skipping bad file: "+file)
if VERBOSE:
print " > skipping bad file: "+file
else:
if VERBOSE:
print " > processing file: "+file
if LOGOUTPUT:
logstring.append(" > processing file: "+file)
try:
sciencedata, scienceheader=getdata(folderdir+file,header=True)
exptime=scienceheader["EXPTIME"]
passband=scienceheader["FILTER"]
if passband not in masterflats.keys():
if VERBOSE:
print file+" is missing flat in proper passband; master-master flat will be used"
if LOGOUTPUT:
logstring.append(" > "+file+" is missing flat in proper passband; master-master flat will be used")
missing_flat_passband = appenditemtodict(file,folder,missing_flat_passband)
else:
sciencedata_bdsff = bdsff(sciencedata,exptime,passband,masterbias,masterdarks,masterflats)
if sciencedata_dsff_cutoff!=None and sciencedata_bdsff.min()<sciencedata_dsff_cutoff:
if VERBOSE:
print file+" was masked; info stored in MASK and MASKVAL header keywords"
if LOGOUTPUT:
logstring.append(" > "+file+" was masked; info stored in MASK and MASKVAL header keywords")
scienceheader["MASK"]="True"
scienceheader["MASKVAL"]=sciencedata_dsff_cutoff
sciencedata_bdsff,sciencemask_bdsff = maskdata(sciencedata_bdsff,sciencedata_dsff_cutoff)
if GENERATE:
savemask(sciencemaskfolderdir,file,sciencemask_bdsff)
else:
scienceheader["MASK"]="False"
scienceheader["MASKVAL"]="NA"
savebdsff(dsfffolderdir,file,sciencedata_bdsff,scienceheader)
except (IOError,OSError):
if VERBOSE:
print " > file "+file+" missing."
if LOGOUTPUT:
logstring.append(" > file "+file+" missing (likely did not produce WCS solution).")
missingwcs = appenditemtodict(file,folder,missingwcs)
else:
if VERBOSE:
print " > skipping file: "+file+" (either bad ext or missing desired object in filename)"
elif bothcaldirs(caldir,flatdir)=="AutoFlat":
if VERBOSE:
print "folder "+folder+" has no flat data; master-master flats will be used"
if LOGOUTPUT:
logstring.append(" > folder "+folder+" has no flat data; master-master flats will be used")
missingflat(folder,folderdir,badsciencefiles,badobjfiles,missing_flat,logstring,store=True,log=logbool)
# create master calibration images
if VERBOSE:
print "creating master bias"
if LOGOUTPUT:
logstring.append(" > creating master bias")
masterbias,badbiasfiles = createmasterbias(caldir,folder,badbiasfiles,logstring,sbool,log=logbool)
if VERBOSE:
print "creating master flats"
if LOGOUTPUT:
logstring.append(" > creating master darks")
masterdarks,baddarkfiles = createmasterdarks(caldir,masterbias,folder,baddarkfiles,logstring,sbool,log=logbool)
# save master calibration images
if VERBOSE:
print "saving master bias"
if LOGOUTPUT:
logstring.append(" > saving master bias")
savemasterbias(mastercalfolderdir,masterbias)
if VERBOSE:
print "saving master darks"
if LOGOUTPUT:
logstring.append(" > saving master darks")
savemasterdarks(mastercalfolderdir,masterdarks)
# collect master calibration images
all_masterbias.append(masterbias)
all_masterdarks = appendmasterdarks(masterdarks,all_masterdarks)
elif bothcaldirs(caldir,flatdir)=="Calibration":
if VERBOSE:
print "folder "+folder+" has no bias or dark data; master-master bias and darks will be used"
if LOGOUTPUT:
logstring.append(" > folder "+folder+" has no bias or dark data; master-master bias and darks will be used")
missingcalibration(folder,folderdir,badsciencefiles,badobjfiles,missing_calibration,logstring,store=True,log=logbool)
# create master flat images
if VERBOSE:
print "creating master flats"
if LOGOUTPUT:
logstring.append(" > creating master flats")
masterflats,badflatfiles = createmasterflats(flatdir,masterbias,masterdarks,folder,badflatfiles,logstring,sbool,log=logbool)
# save master calibration images
if VERBOSE:
print "saving master flats"
if LOGOUTPUT:
logstring.append(" > saving master flats")
savemasterflats(mastercalfolderdir,masterflats)
# collect master flat images
all_masterflats = appendmasterflats(masterflats,all_masterflats)
elif bothcaldirs(caldir,flatdir)==False:
if LOGOUTPUT:
logstring.append("no bias, dark, or flat data for folder "+folder+"; master-master images will be used")
if VERBOSE:
print "no bias, dark, or flat data for folder "+folder+"; master-master images will be used"
missingcalflat(folder,folderdir,badsciencefiles,badobjfiles,missing_calflat,logstring,store=True,log=logbool)
end_time = time.time()
elapsed_time_i = end_time - start_time
elapsed_time.append(elapsed_time_i)
if LOGOUTPUT:
logstring.append("elapsed time: "+str(elapsed_time)+" seconds\n")
return badbiasfiles,baddarkfiles,badflatfiles,badsciencefiles,missing_flat_passband,missing_calibration,missing_flat,missing_calflat,all_masterbias,all_masterdarks,all_masterflats,wrongextfiles,elapsed_time,logstring
############################## PERFORM DATA REDUCTION ##############################
if sciencedata_dsff_cutoff!=None:
sciencedata_dsff_cutoff = float(sciencedata_dsff_cutoff)
checkdirectories = [mastercaldir,MMcaldir,dsffdir,sciencemaskdir,logdir]
pool_cal = multiprocessing.Pool(ncores_cal)
if REDUCE:
if VERBOSE:
print "\n------------------------- proceeding with data reduction -------------------------"
# only clear out directories if performing calibration
for dir in checkdirectories:
if pathexists(dir):
os.system("rm -rf "+dir)
else:
pass
os.system("mkdir "+dir)
if VERBOSE:
print "cleared directory: "+dir
if dir!= MMcaldir and dir!=logdir:
for folder in folders:
os.system("mkdir "+dir+folder)
if VERBOSE:
print "cleared directory: "+dir+folder
badbiasfiles_zip,baddarkfiles_zip,badflatfiles_zip,badsciencefiles_zip,missing_flat_passband_zip,missing_calibration_zip,missing_flat_zip,missing_calflat_zip,all_masterbias_zip,all_masterdarks_zip,all_masterflats_zip,wrongextfiles_zip,elapsed_time_zip,logstring_zip = zip(*pool_cal.map(maincal,folders))
# fix all zipped lists and dictionaries to regular lists and dictionaries
badbiasfiles = collectzipdicts(badbiasfiles_zip)
baddarkfiles = collectzipdicts(baddarkfiles_zip)
badflatfiles = collectzipdicts(badflatfiles_zip)
badsciencefiles = collectzipdicts(badsciencefiles_zip)
missing_flat_passband = collectzipdicts(missing_flat_passband_zip)
missing_calibration = collectzipdicts(missing_calibration_zip)
missing_flat = collectzipdicts(missing_flat_zip)
missing_calflat = collectzipdicts(missing_calflat_zip)
wrongextfiles = collectzipdicts(wrongextfiles_zip)
elapsed_time = collectziplists(elapsed_time_zip)
logstring = collectziplists(logstring_zip)
if VERBOSE:
print "\n--------------- creating master-master bias, dark, and flat images ---------------"
if LOGOUTPUT:
logstring.append("\n--------------- creating master-master bias, dark, and flat images ---------------")
if VERBOSE:
print "creating master-master bias"
if LOGOUTPUT:
logstring.append("creating master-master bias")
all_masterbias = collectziplists(all_masterbias_zip)
MMbias = createMMbias(all_masterbias)
if VERBOSE:
print "creating master-master darks"
if LOGOUTPUT:
logstring.append("creating master-master darks")
all_masterdarks = collectzipdicts(all_masterdarks_zip)
MMdarks = createMMdarks(all_masterdarks)
if VERBOSE:
print "creating master-master flats"
if LOGOUTPUT:
logstring.append("creating master-master flats")
all_masterflats = collectzipdicts(all_masterflats_zip)
MMflats = createMMflats(all_masterflats)
# save master-master images
if VERBOSE:
print "saving master-master bias"
if LOGOUTPUT:
logstring.append("saving master-master bias")
savemasterbias(MMcaldir,MMbias)
if VERBOSE:
print "saving master-master darks"
if LOGOUTPUT:
logstring.append("saving master-master darks")
savemasterdarks(MMcaldir,MMdarks)
if VERBOSE:
print "saving master-master flats"
if LOGOUTPUT:
logstring.append("saving master-master flats")
savemasterflats(MMcaldir,MMflats)
if VERBOSE:
print "\n------------------ checking for missing biases, darks, and flats -----------------"
if LOGOUTPUT:
logstring.append("\n------------------ checking for missing biases, darks, and flats -----------------")
if LOGOUTPUT:
logbool=True
else:
logbool=False
# missing flats
if not missing_flat:
if VERBOSE:
print "there are no science images missing flat frames"
if LOGOUTPUT:
logstring.append("there are no science images missing flat frames")
else:
if VERBOSE:
print "there are science images missing all flat frames"
if LOGOUTPUT:
logstring.append("there are science images missing all flat frames")
badsciencefiles,badobjfiles,wrongextfiles,logstring=bdsff_missingdata(
missing_flat,VERBOSE,GENERATE,logstring,badsciencefiles,badobjfiles,wrongextfiles,log=logbool,useMMflat=True
)
# missing flats in proper passband
if not missing_flat_passband:
if VERBOSE:
print "there are no science images missing flats in their proper passbands"
if LOGOUTPUT:
logstring.append("there are no science images missing flats in their proper passbands")
else:
if VERBOSE:
print "there are science images missing flat frames in their proper passbands"
if LOGOUTPUT:
logstring.append("there are science images missing flat frames in their proper passbands")
badsciencefiles,badobjfiles,wrongextfiles,logstring=bdsff_missingdata(
missing_flat_passband,VERBOSE,GENERATE,logstring,badsciencefiles,badobjfiles,wrongextfiles,log=logbool,useMMflat=True
)
# missing bias, darks
if not missing_calibration:
if VERBOSE:
print "there are no science images missing all bias and dark frames"
if LOGOUTPUT:
logstring.append("there are no science images missing all bias and dark frames")
else:
if VERBOSE:
print "there are science images missing all bias and dark frames"
if LOGOUTPUT:
logstring.append("there are science images missing all bias and dark frames")
bdsff_missingdata(missing_calibration,VERBOSE,GENERATE,logstring,log=logbool,useMMbias=True,useMMdark=True)
# missing flat + bias and darks
if not missing_calflat:
if VERBOSE:
print "there are no science images missing all bias, dark, and flat frames"
if LOGOUTPUT:
logstring.append("there are no science images missing all bias, dark, and flat frames")
else:
if VERBOSE:
print "there are science images missing all bias, dark, and flat frames"
if LOGOUTPUT:
logstring.append("there are science images missing all bias, dark, and flat frames")
badsciencefiles,badobjfiles,wrongextfiles,logstring=bdsff_missingdata(
missing_calflat,VERBOSE,GENERATE,logstring,badsciencefiles,badobjfiles,wrongextfiles,log=logbool,useMMbias=True,useMMdark=True,useMMflat=True
)
if LOGOUTPUT:
# write calibration log
if VERBOSE:
print "writing calibration log"
f=open(logdir+"calibration.log","w+")
for item in logstring:
f.write("%s\n" % item)
f.close()
# write bad files log
if VERBOSE:
print "> writing bad file log"
f=open(logdir+"badfiles.log","w+")
filedicts = [badbiasfiles,baddarkfiles,badflatfiles,badsciencefiles,badobjfiles]
dictstrings = ["bias files flagged as bad","dark files flagged as being bad","flat files flagged as being bad","science files flagged as being bad","science files lacking desired object in filename"]
for folder in folders:
f.write("%s\n" % folder)
for i in range(len(filedicts)):
filedict = filedicts[i]
dictstring = dictstrings[i]
f.write("%s\n" % dictstring)
if folder in filedict.keys():
filelist = filedict[folder]
if len(filelist)==0:
f.write("None\n")
elif len(filelist)!=0:
for file in filelist:
f.write("%s\n" % file)
else:
f.write("None\n")
f.write("\n")
f.close()
else:
if VERBOSE:
print "\n----------------------------- skipping data reduction ----------------------------"
#########################################################################################################
# #
# PAN-STARRS CALIBRATION #
# #
#########################################################################################################
#########################################################################################################
# #
# ZEROPOINT CALIBRATION #
# #
#########################################################################################################
######################################## ZEROPOINT FUNCTION #############################################
panstarrspassbands = ["g","r","i","z","y"]
def mainzeropointcal_panstarrs(panstarrsdata,folder,folderdir,file,logbool=False,CHECKZP=False):
#
# Measures the magnitude zero point by comparing Source Extractor measurements to Pan-STARRS. Uses the slope of
# (Pan-STARRS mag - SExtractor mag) vs. Pan-STARRS mag to determine if the image will be included; a non-zero slope
# within 3-sigma uncertainties will be returned in the 'badcalfiles' dictionary and not used any further.
#
logstring = []
######################## long exposure (120 s) ########################
# zero slopes and 'good' zero point values
stackscienceimages_longexp_dict = {}
zeropoints_longexp_dict = {}
zeropoint_errs_longexp_dict = {}
airmasses_longexp_dict = {}
timeobs_longexp_dict = {}
FWHM_longexp_dict = {}
# matched and cleaned
mag_sex_matches_clean_longexp_dict = {}
magerr_sex_matches_clean_longexp_dict = {}
mag_ps_matches_clean_longexp_dict = {}
magerr_ps_matches_clean_longexp_dict = {}
# matched
mag_sex_matches_longexp_dict = {}
magerr_sex_matches_longexp_dict = {}
mag_ps_matches_longexp_dict = {}
magerr_ps_matches_longexp_dict = {}
# all zero slopes ('good' and 'bad' zero point values) for plotting
zeropoints_all_longexp_dict = {}
zeropoints_err_all_longexp_dict = {}
airmasses_all_longexp_dict = {}
timeobs_all_longexp_dict = {}
FWHM_all_longexp_dict = {}
# zero slopes but 'poor' zeropoint values AND non-zero slopes
donotstackscienceimages_longexp_dict = {}
######################## short exposure (5 s) ########################
# zero slopes and 'good' zero point values
stackscienceimages_shortexp_dict = {}
zeropoints_shortexp_dict = {}
zeropoint_errs_shortexp_dict = {}
airmasses_shortexp_dict = {}
timeobs_shortexp_dict = {}
FWHM_shortexp_dict = {}
# matched and cleaned
mag_sex_matches_clean_shortexp_dict = {}
magerr_sex_matches_clean_shortexp_dict = {}
mag_ps_matches_clean_shortexp_dict = {}
magerr_ps_matches_clean_shortexp_dict = {}
# matched
mag_sex_matches_shortexp_dict = {}
magerr_sex_matches_shortexp_dict = {}
mag_ps_matches_shortexp_dict = {}
magerr_ps_matches_shortexp_dict = {}
# all zero slopes ('good' and 'bad' zero point values) for plotting
zeropoints_all_shortexp_dict = {}
zeropoints_err_all_shortexp_dict = {}
airmasses_all_shortexp_dict = {}
timeobs_all_shortexp_dict = {}
FWHM_all_shortexp_dict = {}
# zero slopes but 'poor' zeropoint values AND non-zero slopes
donotstackscienceimages_shortexp_dict = {}
sciencedata = fits.getdata(folderdir+file)
scienceheader = fits.getheader(folderdir+file)
passband = scienceheader["FILTER"]
airmass = scienceheader["AIRMASS"]
exptime = scienceheader["EXPTIME"]
timeobs = scienceheader["TIME-OBS"]
timeobs_24h = ftimeobs_to24h(timeobs)
FWHM = scienceheader["FWHM"]
object = re.split("-|\.",file)[0]
if passband in panstarrspassbands:
if VERBOSE:
print " > processing file: "+file
if LOGOUTPUT:
logstring.append(" > processing file: "+str(file))
# run Source Extractor if indicated otherwise open already existing file
if CHECKZP==False:
sexcat = sexcall(file,folder,folderdir,sexobjdir,sexcatdir,sexbgdir,sexbool=SEXTRACTOR,CHECKZP=CHECKZP)
elif CHECKZP==True:
sexcat = sexcall(file,folder,folderdir,sexobjcheckzpdir,sexcatcheckzpdir,sexbgcheckzpdir,sexbool=SEXTRACTOR,CHECKZP=CHECKZP)
# find Pan-STARRS overlap with SExtractor
ZEROSLOPE,zeropoint,zeropoint_error,GOODZP,CHECKOBSTIME,mag_sex_matches_clean,magerr_sex_matches_clean,mag_ps_matches_clean,magerr_ps_matches_clean,mag_sex_matches,magerr_sex_matches,mag_ps_matches,magerr_ps_matches = magcalibration(file,folder,folderdir,panstarrsdata,sexcat,VERBOSE,GENERATE,CHECKZP)
######################## long exposure (120 s) ########################
if exptime==120.:
print passband, exptime, "(long exposure)"
# collect files with zero slopes and 'good' zero point values
if (ZEROSLOPE==True) and (GOODZP==True) and (CHECKOBSTIME==True):
# zero slopes and 'good' zero point values
stackscienceimages_longexp_dict = appenditemtodict(folderdir+file,object,stackscienceimages_longexp_dict)
zeropoints_longexp_dict = appenditemtodict(zeropoint,passband,zeropoints_longexp_dict)
zeropoint_errs_longexp_dict = appenditemtodict(zeropoint_error,passband,zeropoint_errs_longexp_dict)
airmasses_longexp_dict = appenditemtodict(airmass,passband,airmasses_longexp_dict)
timeobs_longexp_dict = appenditemtodict(timeobs_24h,passband,timeobs_longexp_dict)
FWHM_longexp_dict = appenditemtodict(FWHM,passband,FWHM_longexp_dict)
# matched and cleaned
mag_sex_matches_clean_longexp_dict = appenditemtodict(mag_sex_matches_clean,passband,mag_sex_matches_clean_longexp_dict)
magerr_sex_matches_clean_longexp_dict = appenditemtodict(magerr_sex_matches_clean,passband,magerr_sex_matches_clean_longexp_dict)
mag_ps_matches_clean_longexp_dict = appenditemtodict(mag_ps_matches_clean,passband,mag_ps_matches_clean_longexp_dict)
magerr_ps_matches_clean_longexp_dict = appenditemtodict(magerr_ps_matches_clean,passband,magerr_ps_matches_clean_longexp_dict)
# matched
mag_sex_matches_longexp_dict = appenditemtodict(mag_sex_matches,passband,mag_sex_matches_longexp_dict)
magerr_sex_matches_longexp_dict = appenditemtodict(magerr_sex_matches,passband,magerr_sex_matches_longexp_dict)
mag_ps_matches_longexp_dict = appenditemtodict(mag_ps_matches,passband,mag_ps_matches_longexp_dict)
magerr_ps_matches_longexp_dict = appenditemtodict(magerr_ps_matches,passband,magerr_ps_matches_longexp_dict)
if CHECKZP==False:
# add zero-point to FITS header
fits.setval(folderdir+file, "ZP", value=zeropoint)
# add stacking boolean
fits.setval(folderdir+file, "stack", value=True)
# write calibrated image
calibratedfolderdir = pscalibrateddir+folder+"/"
newfilename = file.split(".fts")[0]+"_calibrated.fts"
#sciencedata_cal = fZPcorrADUs(sciencedata,zeropoint)
if VERBOSE:
print "writing calibrated image: "+calibratedfolderdir+newfilename
fits.writeto(calibratedfolderdir+newfilename,sciencedata,scienceheader,overwrite=True)
# collect files with non-zero slopes and 'bad' zero-point values
else:
donotstackscienceimages_longexp_dict = appenditemtodict(folderdir+file,object,donotstackscienceimages_longexp_dict)
if zeropoint!=None:
zeropoints_all_longexp_dict = appenditemtodict(zeropoint,passband,zeropoints_all_longexp_dict)
zeropoints_err_all_longexp_dict = appenditemtodict(zeropoint_error,passband,zeropoints_err_all_longexp_dict)
airmasses_all_longexp_dict = appenditemtodict(airmass,passband,airmasses_all_longexp_dict)
timeobs_all_longexp_dict = appenditemtodict(timeobs_24h,passband,timeobs_all_longexp_dict)
FWHM_all_longexp_dict = appenditemtodict(FWHM,passband,FWHM_all_longexp_dict)
# matched
mag_sex_matches_longexp_dict = appenditemtodict(mag_sex_matches,passband,mag_sex_matches_longexp_dict)
magerr_sex_matches_longexp_dict = appenditemtodict(magerr_sex_matches,passband,magerr_sex_matches_longexp_dict)
mag_ps_matches_longexp_dict = appenditemtodict(mag_ps_matches,passband,mag_ps_matches_longexp_dict)
magerr_ps_matches_longexp_dict = appenditemtodict(magerr_ps_matches,passband,magerr_ps_matches_longexp_dict)
if CHECKZP==False:
# add stacking boolean
fits.setval(folderdir+file, "stack", value=False)
######################## short exposure (5 s) ########################
elif exptime==5.:
# collect files with zero slopes and 'good' zero point values
if (ZEROSLOPE==True) and (GOODZP==True) and (CHECKOBSTIME==True):
# zero slopes and 'good' zero point values
stackscienceimages_shortexp_dict = appenditemtodict(folderdir+file,object,stackscienceimages_shortexp_dict)
zeropoints_shortexp_dict = appenditemtodict(zeropoint,passband,zeropoints_shortexp_dict)
zeropoint_errs_shortexp_dict = appenditemtodict(zeropoint_error,passband,zeropoint_errs_shortexp_dict)
airmasses_shortexp_dict = appenditemtodict(airmass,passband,airmasses_shortexp_dict)
timeobs_shortexp_dict = appenditemtodict(timeobs_24h,passband,timeobs_shortexp_dict)
FWHM_shortexp_dict = appenditemtodict(FWHM,passband,FWHM_shortexp_dict)
# matched and cleaned
mag_sex_matches_clean_shortexp_dict = appenditemtodict(mag_sex_matches_clean,passband,mag_sex_matches_clean_shortexp_dict)
magerr_sex_matches_clean_shortexp_dict = appenditemtodict(magerr_sex_matches_clean,passband,magerr_sex_matches_clean_shortexp_dict)
mag_ps_matches_clean_shortexp_dict = appenditemtodict(mag_ps_matches_clean,passband,mag_ps_matches_clean_shortexp_dict)
magerr_ps_matches_clean_shortexp_dict = appenditemtodict(magerr_ps_matches_clean,passband,magerr_ps_matches_clean_shortexp_dict)
# matched
mag_sex_matches_shortexp_dict = appenditemtodict(mag_sex_matches,passband,mag_sex_matches_shortexp_dict)
magerr_sex_matches_shortexp_dict = appenditemtodict(magerr_sex_matches,passband,magerr_sex_matches_shortexp_dict)
mag_ps_matches_shortexp_dict = appenditemtodict(mag_ps_matches,passband,mag_ps_matches_shortexp_dict)
magerr_ps_matches_shortexp_dict = appenditemtodict(magerr_ps_matches,passband,magerr_ps_matches_shortexp_dict)
if CHECKZP==False:
# add zero-point to FITS header
fits.setval(folderdir+file, "ZP", value=zeropoint)
# add stacking boolean
fits.setval(folderdir+file, "stack", value=True)
# write calibrated image
calibratedfolderdir = pscalibrateddir+folder+"/"
newfilename = file.split(".fts")[0]+"_calibrated.fts"
#sciencedata_cal = fZPcorrADUs(sciencedata,zeropoint)
if VERBOSE:
print "writing calibrated image: "+calibratedfolderdir+newfilename
fits.writeto(calibratedfolderdir+newfilename,sciencedata,scienceheader,overwrite=True)
# collect files with non-zero slopes and 'bad' zero-point values
else:
donotstackscienceimages_shortexp_dict = appenditemtodict(folderdir+file,object,donotstackscienceimages_shortexp_dict)
# matched
mag_sex_matches_shortexp_dict = appenditemtodict(mag_sex_matches,passband,mag_sex_matches_shortexp_dict)
magerr_sex_matches_shortexp_dict = appenditemtodict(magerr_sex_matches,passband,magerr_sex_matches_shortexp_dict)
mag_ps_matches_shortexp_dict = appenditemtodict(mag_ps_matches,passband,mag_ps_matches_shortexp_dict)
magerr_ps_matches_shortexp_dict = appenditemtodict(magerr_ps_matches,passband,magerr_ps_matches_shortexp_dict)
if zeropoint!=None:
# bad zero-points
zeropoints_all_shortexp_dict = appenditemtodict(zeropoint,passband,zeropoints_all_shortexp_dict)
zeropoints_err_all_shortexp_dict = appenditemtodict(zeropoint_error,passband,zeropoints_err_all_shortexp_dict)
airmasses_all_shortexp_dict = appenditemtodict(airmass,passband,airmasses_all_shortexp_dict)
timeobs_all_shortexp_dict = appenditemtodict(timeobs_24h,passband,timeobs_all_shortexp_dict)
FWHM_all_shortexp_dict = appenditemtodict(FWHM,passband,FWHM_all_shortexp_dict)