-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
321 lines (277 loc) · 15.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#!/usr/bin/python
import tensorflow as tf
import numpy as np
import os, getopt
import glob
import time
import cv2
import os
import sys
from skimage.transform import resize
from sklearn.model_selection import train_test_split
from imgaug import augmenters as iaa
from skimage import io
from model import *
from sys import argv
import argparse
p = argparse.ArgumentParser()
p.add_argument('--dataset_dir', type=str, default='./data/intermediate/', help='Input dataset.')
p.add_argument('--test_percentage', type=int, default=10, help='Percentage of images to use as a test set.')
p.add_argument('--output_dir', type=str, default='./project_dir/final', help='Directory where checkpoints and event logs are written to.')
p.add_argument('--checkpoint_path', type=str, default='', help='Path to pretrained model checkpoint')
p.add_argument('--restore_model', type=bool, default=False, help='Restore weights from checkpoint')
p.add_argument('--max_epochs', type=int, default=300, help='Number of epochs')
p.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate.')
p.add_argument('--lambda_value', type=float, default=1e-5, help='Coefficient applied to discriminator loss.')
p.add_argument('--batch_size', type=int, default=32, help='The number of samples in each batch.')
p.add_argument('--encoder_feature_size', type=int, default=10, help='The Number output feature from encoder.')
FLAGS = p.parse_args()
def create_train(image_path, sleep_label, source_label):
array_lst = list()
images = list()
# load file and convert to numpy array
with open(image_path.decode(), 'r') as file:
for row in file.readlines()[1:]:
row_lst = list()
for element in row.split(','):
row_lst.append(float(element))
array_lst.append(row_lst)
image_np = np.array(array_lst)
image_np = 2 *((image_np - image_np.min())/(image_np.max() - image_np.min())) -1
# convert datatype
image_np = np.float32(image_np)
sleep_label = np.int16(sleep_label)
source_label = np.int16(source_label)
return image_np, sleep_label, source_label
def main():
# saved model checkpoint file path
save_checkpoint_path = os.path.join(FLAGS.output_dir, 'snapshot_1.ckpt')
# restore model from pretrained checkpoint path
pretrained_checkpoint_path = os.path.join(FLAGS.output_dir, 'snapshot_1.ckpt')
if FLAGS.checkpoint_path:
pretrained_checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
# create output file
output_file = os.path.join(FLAGS.output_dir,'log.txt')
# create directory
if not os.path.exists(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
# create train/test split and images and label lists
if os.path.isdir(FLAGS.dataset_dir):
# read images and generate image list
image_path_lst = list()
source_label_lst = list()
sleep_label_lst = list()
for file_name in os.listdir(FLAGS.dataset_dir):
if file_name.endswith('.txt'):
# print(file_name)
file_path = os.path.join(FLAGS.dataset_dir, file_name)
image_path_lst.append(file_path)
training_filenames, test_filenames = train_test_split(image_path_lst, test_size=FLAGS.test_percentage/100, random_state=13)
for file_name in training_filenames:
file_name = file_name.split('/')[-1]
# print(file_name)
label = file_name.split('_')[1]
if label == 's1':
source_label_lst.append(0.)
elif label == 's2':
source_label_lst.append(1.)
if 'F' in file_name:
sleep_label_lst.append(0.)
if 'MW' in file_name:
sleep_label_lst.append(1.)
# save file name list
train_path = os.path.join(FLAGS.output_dir, "train_list.txt")
with open(train_path, 'w') as file:
file.write('\n'.join(training_filenames))
test_path = os.path.join(FLAGS.output_dir, "test_list.txt")
with open(test_path, 'w') as file:
file.write('\n'.join(test_filenames))
# read train images and label lists from file
else:
train_path = os.path.join(FLAGS.output_dir, "train_list.txt")
source_label_lst = list()
sleep_label_lst = list()
training_filenames = list()
with open(train_path, 'r') as file:
filenames = file.readlines()
for file_name in filenames:
training_filenames.append(file_name.strip())
file_name = file_name.split('/')[-1]
label = file_name.split('_')[1]
if label == 's1':
source_label_lst.append(0.)
elif label == 's2':
source_label_lst.append(1.)
if 'F' in file_name:
sleep_label_lst.append(0.)
if 'MW' in file_name:
sleep_label_lst.append(1.)
image_path_np = np.array(training_filenames)
sleep_label_np = np.array(sleep_label_lst)
source_label_np = np.array(source_label_lst)
##### Create place holder
input_images = tf.placeholder(tf.float32, shape = (None, 64, 8192), name = 'input_images')
source_label = tf.placeholder(tf.int32, shape = (None), name = 'source_label')
sleep_label = tf.placeholder(tf.int32, shape = (None), name = 'sleep_label')
tf_is_training = tf.placeholder(tf.bool, name = 'tf_is_training')
train_dataset_size = len(training_filenames)
n_batch = int(np.ceil(train_dataset_size / FLAGS.batch_size))
# Input pipeline
with tf.variable_scope(None, 'Data_input_pipeline'):
# import data and apply mapping function
train_dataset = tf.data.Dataset.from_tensor_slices((image_path_np, sleep_label_np, source_label_np )).shuffle(FLAGS.batch_size*2)
train_dataset = train_dataset.map((lambda images, sleep_label, source_label: tf.py_func(create_train, [images, sleep_label, source_label], [np.float32, np.int16, np.int16])), num_parallel_calls= 8).batch(FLAGS.batch_size).repeat()
train_iterator = train_dataset.make_initializable_iterator()
train_next_element = train_iterator.get_next()
# define encoder model
with tf.variable_scope(None, 'encoder'):
features,_ = encoder(input_images, tf_is_training, FLAGS.encoder_feature_size)
# tf.summary.image('input_images', tf.expand_dims(input_images,-1), max_outputs=3)
# define predictor model
with tf.variable_scope(None, 'predictor'):
pred_logits = predictor(features, tf_is_training)
# define prediction loss function
pred_loss = tf.losses.softmax_cross_entropy(onehot_labels=tf.one_hot(sleep_label, 2), logits=pred_logits)
predict_sleep = tf.nn.softmax(pred_logits)
# define discriminator model
with tf.variable_scope(None, 'discriminator'):
disc_logits = discriminator(predict_sleep , features, tf_is_training)
# define discriminator loss function
disc_loss = tf.losses.softmax_cross_entropy(onehot_labels=tf.one_hot(source_label, 2), logits=disc_logits)
# define value function
value_loss = pred_loss - FLAGS.lambda_value * disc_loss
# add summaries
tf.summary.scalar('lambda value', FLAGS.lambda_value)
tf.summary.scalar('discriminator loss', disc_loss)
tf.summary.scalar('predictor loss', pred_loss)
tf.summary.scalar('value loss', value_loss)
# define trainable variables for each model
train_encoder = [var for var in tf.trainable_variables() if ('encoder' in var.name)]
train_predictor = [var for var in tf.trainable_variables() if ('predictor' in var.name)]
train_discriminator = [var for var in tf.trainable_variables() if ('discriminator' in var.name)]
# add trainable variables to summary
for var in train_encoder:
print('encoder training parameters -------------------------------',var)
tf.summary.histogram(str(var.name),var)
for var in train_predictor:
print('predictor training parameters -------------------------------',var)
tf.summary.histogram(str(var.name),var)
for var in train_discriminator:
print('discriminator training parameters -------------------------------',var)
tf.summary.histogram(str(var.name),var)
# create global step variable
global_step = tf.Variable(0, name='global_step', trainable=False, dtype=tf.int32)
increment_global_step_op = tf.assign(global_step, global_step+1)
# define exponential decay learning rate
decay_steps = int(train_dataset_size/
FLAGS.batch_size)
decay_steps = 20
learning_rate = tf.train.exponential_decay(FLAGS.learning_rate,
global_step,
decay_steps,
0.94,
staircase=True,
name='exponential_decay_learning_rate')
tf.summary.scalar('learning_rate', learning_rate)
# define encoder optimizer
with tf.variable_scope('encoder_opt') as scope:
tf_optimizer_enc = tf.train.AdamOptimizer(learning_rate)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope = 'encoder')
with tf.control_dependencies(update_ops):
optimizer_enc = tf_optimizer_enc.minimize(value_loss, var_list = train_encoder, name="train_predictor")
# define perdictor optimizer
with tf.variable_scope('predictor_opt') as scope:
tf_optimizer_pred = tf.train.AdamOptimizer(learning_rate)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope = 'predictor')
with tf.control_dependencies(update_ops):
optimizer_pred = tf_optimizer_pred.minimize(value_loss, var_list = train_predictor, name="train_predictor")
# define discriminator optimizer
with tf.variable_scope('discriminator_opt') as scope:
tf_optimizer_disc = tf.train.AdamOptimizer(learning_rate)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope = 'discriminator')
with tf.control_dependencies(update_ops):
optimizer_disc = tf_optimizer_disc.minimize(value_loss, var_list = train_discriminator, name="train_discriminator")
# define checkpoint varaibles
trained_include = ['encoder', 'predictor', 'discriminator', 'global_step']
trained_exclude = []
trained_vars = tf.contrib.framework.get_variables_to_restore(
include = trained_include,
exclude = trained_exclude)
print('saved_varaiables ------------------------- ', trained_vars)
tf_saver = tf.train.Saver(trained_vars, name="saver")
# initialize, configure and start session
init = tf.global_variables_initializer()
config = tf.ConfigProto()
config.log_device_placement = False
config.gpu_options.allow_growth = True
with tf.Session(config = config) as sess:
sess.run(init)
# restoring the latest checkpoint in checkpoint_dir
if FLAGS.restore_model:
print("Loading from checkpoint ", pretrained_checkpoint_path)
tf_saver.restore(sess, pretrained_checkpoint_path)
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(FLAGS.output_dir + '/train', sess.graph)
sess.run(train_iterator.initializer)
# disc_loss_np = 0
# while disc_loss_np < 2.8:
# n_batch=2
for epoch in range(FLAGS.max_epochs):
# f = open(output_file, 'a')
global_step_np = sess.run(increment_global_step_op)
# train predictor
cum_pred_loss = 0.
cum_val_loss = 0.
cum_disc_loss = 0.
for batch in range(n_batch):
batch_images, batch_sleep_label, batch_source_label = sess.run(train_next_element)
# encoder training
_, _, val_loss_np, pred_loss_np, disc_loss_np, summary_train = sess.run([optimizer_enc, optimizer_pred, value_loss, pred_loss, disc_loss, merged], feed_dict={input_images: batch_images, source_label:batch_source_label, sleep_label:batch_sleep_label, tf_is_training: True})
sys.stdout.write('\r>> training encoder/predictor: value loss {}, predictor loss {}, discriminator loss {}, batch {}/{} '.format(val_loss_np, pred_loss_np, disc_loss_np, batch+1, n_batch))
sys.stdout.flush()
cum_pred_loss += pred_loss_np
cum_disc_loss += disc_loss_np
cum_val_loss += val_loss_np
# add predition loss to summary
epoch_pred_loss = cum_pred_loss / n_batch
epoch_val_loss = cum_val_loss / n_batch
epoch_disc_loss = cum_disc_loss / n_batch
print('\nPredictor training complete')
train_writer.add_summary(summary_train, global_step_np)
# summary = tf.Summary()
# summary.value.add(tag='predictor loss ' , simple_value= epoch_pred_loss)
# train_writer.add_summary(summary, global_step_np)
# train discriminator
while epoch_disc_loss > 2.8:
cum_val_loss = 0.
cum_disc_loss = 0.
for batch in range(n_batch):
batch_images, batch_sleep_label, batch_source_label = sess.run(train_next_element)
# predictor training
_, val_loss_np, pred_loss_np, disc_loss_np, summary_train = sess.run([optimizer_disc, value_loss, pred_loss, disc_loss, merged], feed_dict={input_images: batch_images, source_label:batch_source_label, sleep_label:batch_sleep_label, tf_is_training: True})
sys.stdout.write('\r>> training discriminator: discriminator loss {}, batch {}/{} '.format(disc_loss_np, batch+1, n_batch))
sys.stdout.flush()
cum_disc_loss += disc_loss_np
cum_val_loss += val_loss_np
epoch_val_loss = cum_val_loss / n_batch
epoch_disc_loss = cum_disc_loss / n_batch
# print('\nDiscriminator training complete')
train_writer.add_summary(summary_train, global_step_np)
# basic evaluation
pred_sleep, gt_label = sess.run([predict_sleep, sleep_label], feed_dict={input_images: batch_images, source_label:batch_source_label, sleep_label:batch_sleep_label, tf_is_training: False})
#
print('step number {} >>>> predictor loss {}, discriminator loss {}, value loss {}\n'.format(global_step_np, epoch_pred_loss, epoch_disc_loss ,epoch_val_loss))
with open(output_file, 'a') as file:
file.write('predictor loss: {}, discriminator loss: {}, value loss: {} for step number {}'.format(epoch_pred_loss, epoch_disc_loss ,epoch_val_loss , global_step_np))
# Add to summary
# summary = tf.Summary()
# summary.value.add(tag=' value loss ' , simple_value= epoch_val_loss)
# summary.value.add(tag='discriminator loss ' , simple_value= epoch_disc_loss)
# train_writer.add_summary(summary, global_step_np)
# saving checkpoint
print('save model')
tf_saver.save(sess, save_checkpoint_path)
with open(output_file, 'a') as file:
file.write('predictor: softmax output {}, ground truth label: {}\n'.format(pred_sleep, gt_label))
if __name__ == "__main__":
main()