Skip to content

asigiuk/learning_sleep_model

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Future work

  1. Hyperparameter optimization.
  2. Experiment with different data augmentation strategies.
    • Apply random (fc, bw) bandpass filter.
    • Apply random power threshold cutoff.

Training

python train.py \
    --output_dir=./project_dir/final \
    --dataset_dir=./data/intermediate/ \
    --batch_size=32

The training scripts follows the model implementation provided in the paper (Learning Sleep Stages from Radio Signals: A Conditional Adversarial Architecture) with slight modification to the training optimization steps.

Predition

python pred.py \
    --input_dir=./project_dir/final

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages