- Hyperparameter optimization.
- Experiment with different data augmentation strategies.
- Apply random (fc, bw) bandpass filter.
- Apply random power threshold cutoff.
python train.py \
--output_dir=./project_dir/final \
--dataset_dir=./data/intermediate/ \
--batch_size=32
The training scripts follows the model implementation provided in the paper (Learning Sleep Stages from Radio Signals: A Conditional Adversarial Architecture) with slight modification to the training optimization steps.
python pred.py \
--input_dir=./project_dir/final