-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_normal_or_adv_training.py
306 lines (216 loc) · 10.9 KB
/
run_normal_or_adv_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Copyright 2020 - 2021 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import sys
import json
from datetime import datetime
from functools import partial
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn.parallel
import torch.utils.data.distributed
from unetr import UNETR
from optimizers.lr_scheduler import LinearWarmupCosineAnnealingLR
from trainer import run_training
from utils.get_args import get_args
from utils.data_utils import get_loader_btcv
from utils.data_utils import get_loader_acdc
from utils.utils import MyOutput
from utils.utils import print_attack_info
from utils.utils import get_folder_name
from monai.inferers import sliding_window_inference
from monai.losses import DiceCELoss, DiceLoss
from monai.metrics import DiceMetric
from monai.transforms import Activations, AsDiscrete, Compose
from monai.utils.enums import MetricReduction
def main():
now_start = datetime.now()
args = get_args()
args.amp = not args.noamp
args.now_start = now_start
if args.adv_training_mode:
# folder for saving model
folder_name = get_folder_name(args)
else:
folder_name = ""
args.folder_name = folder_name
if args.resume:
save_model_dir_ext = os.path.join(args.checkpoint_dir, "" if args.no_sub_dir_model else args.folder_name)
args.logdir = save_model_dir_ext
else:
save_model_dir_ext = os.path.join(args.save_model_dir, "" if args.no_sub_dir_model else args.folder_name)
args.logdir = save_model_dir_ext
# folder will not be created if either debugging or resuming
if not (args.debugging or args.resume):
# create folder for saving results
os.mkdir(save_model_dir_ext)
# save argparse file content
with open(f"{os.path.join(save_model_dir_ext, 'args.json')}", 'wt') as f:
json.dump(vars(args),f, indent=4, default=str)
# log will not be saved if debugging
if not args.debugging:
# keep the terminal output on console and also save it to a file
sys.stdout = MyOutput(f"{os.path.join(save_model_dir_ext, 'log.out' )}")
print("\n\n", "".join(["#"]*130), "\n", "".join(["#"]*130), "\n\n""")
print(f"HostName = {os.uname()[1]}")
print(f'Time & Date = {now_start.strftime("%I:%M %p")} , {now_start.strftime("%d_%b_%Y")}\n\n')
if args.adv_training_mode:
print(f"Adversarial-Training of '{args.model_name.upper()}' Model under following Attack:")
print_attack_info(args)
else:
print(f"\nTraining the '{args.model_name.upper()}' Model ... ")
if args.distributed:
args.ngpus_per_node = torch.cuda.device_count()
print("\nNum. of GPUs = ", args.ngpus_per_node)
args.world_size = args.ngpus_per_node * args.world_size
mp.spawn(main_worker, nprocs=args.ngpus_per_node, args=(args,))
else:
main_worker(gpu=0, args=args)
def main_worker(gpu, args):
if args.distributed:
torch.multiprocessing.set_start_method("fork", force=True)
np.set_printoptions(formatter={"float": "{: 0.3f}".format}, suppress=True)
args.gpu = gpu
if args.distributed:
args.rank = args.rank * args.ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank)
torch.cuda.set_device(args.gpu)
torch.backends.cudnn.benchmark = True
args.test_mode = False
if args.dataset == 'btcv':
print("\nDataset = BTCV\n")
loader = get_loader_btcv(args)
else:
raise ValueError(f"Unsupported Dataset: '{args.dataset}' .")
print("\nRank =", args.rank, " , GPU =", args.gpu)
if args.rank == 0: print("BatchSize:", args.batch_size, " , Epochs:", args.max_epochs, "\n")
inf_size = [args.roi_x, args.roi_y, args.roi_z]
if args.model_name == "unet-r":
model = UNETR(
in_channels=args.in_channels,
out_channels=args.out_channels,
img_size=(args.roi_x, args.roi_y, args.roi_z),
feature_size=args.feature_size,
hidden_size=args.hidden_size,
mlp_dim=args.mlp_dim,
num_heads=args.num_heads,
pos_embed=args.pos_embed,
norm_name=args.norm_name,
conv_block=True,
res_block=True,
dropout_rate=args.dropout_rate)
else:
raise ValueError("Unsupported model " + str(args.model_name))
start_epoch = 0
best_acc = 0
if args.use_pretrained:
pretrained_path = args.pretrained_path
checkpoint_dict = torch.load(pretrained_path)
model.load_state_dict(checkpoint_dict["model_state_dict"] if "model_state_dict" in checkpoint_dict.keys() else checkpoint_dict["state_dict"])
print(f"\nLoading Pre-trained Model Weights from: {pretrained_path}\n")
if args.resume:
checkpoint_dir_ext = os.path.join(args.checkpoint_dir, "" if args.no_sub_dir_model else args.folder_name)
if args.resume_latest: checkpoint_path = os.path.join(checkpoint_dir_ext, 'model_latest.pt')
if args.resume_best: checkpoint_path = os.path.join(checkpoint_dir_ext, 'model_best.pt')
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
model.load_state_dict(checkpoint_dict["model_state_dict"] if "model_state_dict" in checkpoint_dict.keys() else checkpoint_dict["state_dict"])
if args.resume_but_restart:
start_epoch = 0
best_acc = 0
else:
start_epoch = checkpoint_dict["epoch"]+1
best_acc = checkpoint_dict["best_acc"]
print(f"\nResuming Training ...")
print(f"Resume Checkpoint Path: {checkpoint_path}")
print(f"Resume={args.resume}\nRestart={args.resume_but_restart}")
print(f"Start Epoch={start_epoch}")
if "epoch_acc" in checkpoint_dict.keys(): print(f"Accuracy (at Epoch={start_epoch-1})={checkpoint_dict['epoch_acc']:0.6f}")
print(f"Best Accuracy={best_acc:0.6f}\n")
pretrained_path = checkpoint_path
model_inferer = partial(
sliding_window_inference,
roi_size=inf_size,
sw_batch_size=args.sw_batch_size,
predictor=model,
overlap=args.infer_overlap)
model_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Total Model Parameters = {model_total_params:,}\n")
model.cuda(args.gpu)
if args.distributed:
torch.cuda.set_device(args.gpu)
if args.norm_name == "batch":
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model.cuda(args.gpu)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], output_device=args.gpu, find_unused_parameters=True)
## optimizer
if args.optim_name == "adam":
optimizer = torch.optim.Adam(model.parameters(), lr=args.optim_lr, weight_decay=args.reg_weight)
elif args.optim_name == "adamw":
optimizer = torch.optim.AdamW(model.parameters(), lr=args.optim_lr, weight_decay=args.reg_weight)
elif args.optim_name == "sgd":
optimizer = torch.optim.SGD(model.parameters(), lr=args.optim_lr, momentum=args.momentum, nesterov=True, weight_decay=args.reg_weight)
else:
raise ValueError("Unsupported Optimization Procedure: " + str(args.optim_name))
# load optimizer state if resume
if args.resume and not args.resume_but_restart:
print(f"Loading optimizer state_dict from: {pretrained_path}")
optimizer.load_state_dict(checkpoint_dict["optimizer_state_dict"] if "optimizer_state_dict" in checkpoint_dict.keys() else checkpoint_dict["optimizer"])
## scheduler
if args.lrschedule == "warmup_cosine":
scheduler = LinearWarmupCosineAnnealingLR(optimizer, warmup_epochs=args.warmup_epochs, max_epochs=args.max_epochs)
elif args.lrschedule == "cosine_anneal":
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.max_epochs)
else:
scheduler = None
# load scheduler state if resume
if args.resume and not args.resume_but_restart:
print(f"Loading scheduler state_dict from: {pretrained_path}")
scheduler.load_state_dict(checkpoint_dict["scheduler_state_dict"] if "scheduler_state_dict" in checkpoint_dict.keys() else checkpoint_dict["scheduler"])
dice_loss = DiceCELoss(to_onehot_y=True, softmax=True, squared_pred=True, smooth_nr=args.smooth_nr, smooth_dr=args.smooth_dr)
post_label = AsDiscrete(to_onehot=args.out_channels, n_classes=args.out_channels)
post_pred = AsDiscrete(argmax=True, to_onehot=args.out_channels, n_classes=args.out_channels)
dice_acc = DiceMetric(include_background=True, reduction=MetricReduction.MEAN, get_not_nans=True)
accuracy = run_training(
model=model,
train_loader=loader[0],
val_loader=loader[1],
optimizer=optimizer,
loss_func=dice_loss,
acc_func=dice_acc,
args=args,
model_inferer=model_inferer,
scheduler=scheduler,
start_epoch=start_epoch,
best_acc = best_acc,
post_label=post_label,
post_pred=post_pred)
print("\n", "".join(["#"]*130), "\n", "".join(["#"]*130))
if args.adv_training_mode:
print(f"\n Adversarial-Training of '{args.model_name.upper()}' Model completed under following Attack:")
print_attack_info(args)
print(" Model Weights Loaded from Path before Adversarial Training:" , pretrained_path)
print(" Adversarially Trained Model Weights Saved at Path:" , args.logdir)
now_end = datetime.now()
print(f'\nTime & Date = {now_end.strftime("%I:%M %p")} , {now_end.strftime("%d_%b_%Y")}\n')
duration = now_end - args.now_start
duration_in_s = duration.total_seconds()
days = divmod(duration_in_s, 86400) # Get days (without [0]!)
hours = divmod(days[1], 3600) # Use remainder of days to calc hours
minutes = divmod(hours[1], 60) # Use remainder of hours to calc minutes
seconds = divmod(minutes[1], 1) # Use remainder of minutes to calc seconds
print(f"Total Time => {int(days[0])} Days : {int(hours[0])} Hours : {int(minutes[0])} Minutes : {int(seconds[0])} Seconds \n\n")
print("\n", "".join(["#"]*130), "\n", "".join(["#"]*130))
return accuracy
if __name__ == "__main__":
main()