-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSwarm.py
272 lines (222 loc) · 8.88 KB
/
Swarm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# Abstract Swarm Class
import numpy as np
from numpy.random import seed
from numpy.random import rand
from Bat import Bat
from Objective import Objective
from copy import deepcopy
from EA import SEA
import matplotlib
import matplotlib.pyplot as plt
class Swarm:
def __init__(self, name, numberOfSwarm, objectiveFunction, numOfFeature, featureRange, numberOfIter, q):
self.swarmName = name
self.graph = []
self.archive = []
self.numberOfSwarm = numberOfSwarm
self.archiveLimit = 50
self.swarms = []
self.objectiveFunction = objectiveFunction
self.numOfFeature = numOfFeature
self.featureRange = featureRange
self.f_min = 0
self.f_max = 100
self.w1 = 1
self.w2 = 0.8
self.w3 = 0.8
self.A_base = 1
self.r_base = 0.5
self.alpha = 0.9
self.gama = 0.9
self.epsilon = 0.1
self.numberOfIter = numberOfIter
self.EA = SEA(q)
self.bestSwarm = 0
self.bestX = []
self.bestFitness = 99999999999999999
self.best_objectiveValue = []
self.average_archive_fitness_History = []
self.average_archive_objectiveValue_History = []
self.best_fitness_History = []
self.best_objectiveValue_History = []
def createGraph(self):
matrix = np.zeros((self.numberOfSwarm, self.numberOfSwarm))
for i in range(self.numberOfSwarm):
for j in range((i + 1), self.numberOfSwarm):
if rand(1)[0] <= 0.2:
matrix[i, j] = 1
matrix[j, i] = 1
return matrix
def initialize(self):
self.swarms = []
for i in range(self.numberOfSwarm):
self.swarms.append(Bat(
numOfFeature=self.numOfFeature,
featureRange=self.featureRange,
f_min=self.f_min,
f_max=self.f_max,
w1=self.w1,
w2=self.w2,
w3=self.w3,
A_base=self.A_base,
alpha=self.alpha,
r_base=self.r_base,
gama=self.gama,
epsilon=self.epsilon,
objectiveFunction=self.objectiveFunction
))
self.graph = self.createGraph()
for i in range(len(self.swarms)):
self.swarms[i].findNeighbors(i, self.graph, self.swarms)
for item in self.swarms:
item.calc_ObjectiveValues(xType=0)
for item in self.swarms:
item.calc_Fitness(self.swarms, oType=1)
for item in self.swarms:
item.objectiveValues = item.objectiveValues_new
item.objectiveValues_new = []
item.fitnessValue = item.fitnessValue_new
item.fitnessValue_new = 999999999
for item in self.swarms:
isDominated = False
for aItem in self.swarms:
if aItem.dominanceCheck(item):
isDominated = True
break
if not isDominated:
self.archive.append(deepcopy(item))
self.updateBest()
return True
def updateArchive(self, newList):
newlistRemove = []
archiveRemove = []
newArchive = []
for i in range(len(newList)):
for j in range(len(self.archive)):
if self.archive[j].dominanceCheck(newList[i]):
newlistRemove.append(i)
break
elif newList[i].dominanceCheck(self.archive[j]):
archiveRemove.append(j)
break
for i in range(len(newList)):
if i not in newlistRemove:
newArchive.append(deepcopy(newList[i]))
for j in range(len(self.archive)):
if j not in archiveRemove:
newArchive.append(self.archive[j])
newArchive.sort(key=lambda x: x.fitnessValue)
if len(newArchive) > self.archiveLimit:
newArchive = newArchive[0:self.archiveLimit]
self.archive = newArchive
def submitIteration(self):
for item in self.swarms:
item.submitIteration()
return True
def updateBest(self, fType=0):
if fType == 0:
self.swarms.sort(key=lambda x: x.fitnessValue)
if self.swarms[0].fitnessValue <= self.bestFitness:
self.bestSwarm = deepcopy(self.swarms[0])
self.bestX = deepcopy(self.swarms[0].x)
self.bestFitness = deepcopy(self.swarms[0].fitnessValue)
self.best_objectiveValue = deepcopy(self.swarms[0].objectiveValues)
else:
self.swarms.sort(key=lambda x: x.fitnessValue_new)
if self.swarms[0].fitnessValue_new <= self.bestFitness:
self.bestSwarm = deepcopy(self.swarms[0])
self.bestX = deepcopy(self.swarms[0].x_new)
self.bestFitness = deepcopy(self.swarms[0].fitnessValue_new)
self.best_objectiveValue = deepcopy(self.swarms[0].objectiveValues_new)
self.best_fitness_History.append(deepcopy(self.bestFitness))
self.best_objectiveValue_History.append(deepcopy(self.best_objectiveValue))
return True
def CBA(self):
for item in self.swarms:
item.update_v_BA(p=self.bestX, vType=0, xType=0) # Basic method to update BAT
item.update_x_byV(xType=0)
item.update_A()
item.update_r()
item.calc_ObjectiveValues(xType=1)
item.calc_Fitness(self.swarms, oType=0)
if rand(1)[0] > item.r_new:
item.update_v_CBA(p=self.bestX, vType=1, xType=1)
item.update_x_byV(xType=1)
item.calc_ObjectiveValues(xType=1)
item.calc_Fitness(self.swarms, oType=0)
if item.fitnessValue_new <= self.bestFitness:
self.updateBest(fType=1)
item.randomWalk()
item.calc_ObjectiveValues(xType=1)
item.calc_Fitness(self.swarms, oType=0)
if rand(1)[0] < item.A and item.fitnessValue_new <= self.bestFitness:
self.updateBest(fType=1)
return True
def updateArchiveHistory(self):
self.average_archive_fitness_History.append(
np.mean(
[item.fitnessValue for item in self.archive]
)
)
tempOlist = []
for i in range(len(self.objectiveFunction)):
tempOlist.append(
np.mean(
[item.objectiveValues[i] for item in self.archive]
)
)
self.average_archive_objectiveValue_History.append(tempOlist)
def optimize(self):
for i in range(self.numberOfIter):
print("iteration : " + str(i))
self.CBA()
self.submitIteration()
self.updateBest()
self.updateArchive(self.swarms)
EA_output = self.EA.optimize(self.swarms)
self.updateArchive(EA_output)
self.updateArchiveHistory() # to draw charts
return True
def chartHistories(self):
###Avg Fitness
t = range(len(self.average_archive_fitness_History))
s = self.average_archive_fitness_History
fig, ax = plt.subplots()
ax.plot(t, s)
ax.set(xlabel='time', ylabel='avg Fitness',
title='average Fitness over time')
ax.grid()
fig.savefig("Fitness_AVG.png")
#best Fitness
plt.clf()
t = range(len(self.best_fitness_History))
s = self.best_fitness_History
fig, ax = plt.subplots()
ax.plot(t, s)
ax.set(xlabel='time', ylabel='best Fitness',
title='best Fitness over time')
ax.grid()
fig.savefig("Fitness_Best.png")
#AVG Objective
for i in range(len(self.objectiveFunction)):
plt.clf()
t = range(len(self.average_archive_objectiveValue_History))
s = np.array(self.average_archive_objectiveValue_History)[:,i]
fig, ax = plt.subplots()
ax.plot(t, s)
ax.set(xlabel='time', ylabel='avg ' + self.objectiveFunction[i].name,
title='average ' + self.objectiveFunction[i].name + ' over time')
ax.grid()
fig.savefig(self.swarmName + "_" + self.objectiveFunction[i].name + "_AVG.png")
#Best Objective
for i in range(len(self.objectiveFunction)):
plt.clf()
t = range(len(self.best_objectiveValue_History))
s = np.array(self.best_objectiveValue_History)[:, i]
fig, ax = plt.subplots()
ax.plot(t, s)
ax.set(xlabel='time', ylabel='Best ' + self.objectiveFunction[i].name,
title='Best ' + self.objectiveFunction[i].name + ' over time')
ax.grid()
fig.savefig(self.swarmName + "_" + self.objectiveFunction[i].name + "_Best.png")
return True